函数及其表示知识点函数及其表示一、,如果按照某种对应法则,对于集合中的任意元素,在集合中都有唯一确定的元素与之对应,那么这样的单值对应叫做从到的映射,通常记为,f表示对应法则注意:⑴A中元素必须都有象且唯一;⑵B中元素不一定都有原象,但原象不一定唯一。(1)函数的定义:设是两个非空的数集,如果按照某种对应法则,对于集合中的,在集合中都有的数和它对应,那么这样的对应叫做从到的一个函数,通常记为__________(2)函数的定义域、值域在函数中,叫做自变量,叫做的定义域;与的值相对应的值叫做函数值,称为函数的值域。(3)函数的三要素:、:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。,对应法则用不同式子来表示的函数称为分段函数。(二)考点分析考点1:?,,;(2),,.,,,则到的映射有个,,,如果从到的映射满足条件:对中的每个元素与它在中的象的和都为奇数,则映射的个数是()8个12个16个18个考点2:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。?(1),;(2),(3),;(4),(5),(n∈N*);考点3:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;若已知复合函数的解析式,则可用换元法配凑法(4)若已知抽象函数的表达式,则常用解方程组消参的方法求出题型1:,且,( )A. B. C. (x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)解不等式f(x)>2x+(x)=-x2-3,f(x)是二次函数,当x∈[-1,2]时,f(x)的最小值为1,且f(x)+g(x)为奇函数,求函数f(x)、配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法。但要注意所求函数的定义域不是原复合函数的定义域,而是的值域。例2已知,求的解析式3、换元法:已知复合函数的表达式时,还可以用换元法求的解析式。与配凑法一样,要注意所换元的定义域的变化。例3已知,求4、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。例4已知:函数的图象关于点对称,求的解析式5、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。例5设求例6设为偶函数,为奇函数,又试求的解析式6、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。例7已知:,对于任意实数x、y,等式恒成立,求7、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。例8设是定义在上的函数,满足,对任意的自然数都有,求考点4:求函数的定义域题型1:求有解析式的函数的定义域(1)常规方法总结:如没有标明定义域,则认为定义域为使得函数解析式有意义的的取值范围,实际操作时要注意:①分母不能为0;②对数的真数必须为正;③偶次根式中被开方数应为非负数;④零指数幂中,底数不等于0;⑤负分数指数幂中,底数应大于0;⑥若解析式由几个部分组成,则定义域为各个部分相应集合的交集;( )A. . 、函数的定义域是():求复合函数和抽象函数的定义域
函数及其表示知识点 来自淘豆网m.daumloan.com转载请标明出处.