频率/Hz波形数振幅/:学号姓名:,精确测量微弱振动位移的方法;。,远端与静光栅紧密相贴。当放上重物m时,动光栅产生一个相对位移vt,这个位移量相对应于光波位相的变化量为:。由本次实验可知,移动的位相光栅的n级衍射光波,相对于静止的位相光栅有一个大小:的多普勒频率。由此得出质量m和频率ω之间的一一对应关系,利用放大的位移与双光栅的放大效应,(1)基本概况:目前,以莫尔条纹技术为基础的光栅线性位移传感器发展十分迅速,光栅长度测量系统的分辨率达到纳米级,,已成为位移测量领域各工业化国家竞争的关键技术。它的应用非常广泛,几乎渗透到社会科学中的各个领域,如机床行业、计量测试部门、航空航天航海、科研教育以及国防等各个行业部门。(2)常见用途:光栅尺经常应用于数控机床的闭环伺服系统中,可用作直线位移或者角位移的检测。其测量输出的信号为数字脉冲,具有检测范围大,检测精度高,响应速度快的特点。例如,在数控机床中常用于对刀具和工件的坐标进行检测,来观察和跟踪走刀误差,以起到一个补偿刀具的运动误差的作用。(3)工作原理:当使指示光栅上的线纹与标尺光栅上的线纹成一角度来放置两光栅尺时,必然会造成两光栅尺上的线纹互相交叉。在光源的照射下,交叉点近旁的小区域内由于黑色线纹重叠,因而遮光面积最小,挡光效应最弱,光的累积作用使得这个区域出现亮带。相反,距交叉点较远的区域,因两光栅尺不透明的黑色线纹的重叠部分变得越来越少,不透明区域面积逐渐变大,即遮光面积逐渐变大,使得挡光效应变强,只有较少的光线能通过这个区域透过光栅,使这个区域出现暗带,从而便形成了我们所见到的莫尔条纹。当指示光栅上的线纹和标尺光栅上的线纹之间形成一个小角度θ,并且两个光栅尺刻面相对平行放置时,在光源的照射下,位于几乎垂直的栅纹上,形成明暗相间的条纹。这种条纹称为“莫尔条纹”。严格地说,莫尔条纹排列的方向是与两片光栅线纹夹角的平分线相垂直。莫尔条纹中两条亮纹或两条暗纹之间的距离称为莫尔条纹的宽度,以W表示。W=ω/2*sin(θ/2)=ω/θ莫尔条纹具有以下特征:1莫尔条纹的变化规律两片光栅相对移过一个栅距,莫尔条纹移过一个条纹距离。由于光的衍射与干涉作用,莫尔条纹的变化规律近似正(余)弦函数,变化周期数与光栅相对位移的栅距数同步。2放大作用在两光栅栅线夹角较
用双光栅测量微弱振动实验 综述报告 来自淘豆网m.daumloan.com转载请标明出处.