NurfürdenpersönlichenfürStudien,Forschung,,但方法不当也会带来麻烦,特别是在有限的两个小时考试中。恰当选用正确的方法,可取得事半功倍的效果。一、利用全等三角形的性质证明线段相等这种方法很普遍,如果所证两条线段分别在不同的三角形中,它们所在三角形看似全等,或者,通过简单处理(添加辅助线),它们所在三角形看似全等,可考虑这种方法。[例1]如图,C是线段AB上一点,△ACD和△BCE是等边三角形。求证:AE=BD。注:如果有两个形状相同的图形(一般是等腰三角形、等边三角形或正方形),那么可能要用到旋转全等或相似[例2]如图,已知△ABC中,AB=AC,点E在AB上,点F在AC的延长线上,且BE=CF,EF与BC交于D,求证:ED=DF。注:添加辅助线,构造全等三角形二、利用等腰三角形的判定(等角对等边)证明线段相等如果两条所证线段在同一三角形中,证全等一时难以证明,可以考虑用此法。如图,已知在△ABC中,AD是BC边上的中线,E是AD上的一点,且BE=AC,延长BE交AC于F。求证:AF=EF。注:辅助线是中线倍长法[例2]如图,已知△ABC中,AB=AC,DF⊥BC于F,DF与AC交于E,与BA的延长线交于D,求证:AD=AE。三、利用平行四边形的性质证明线段相等如果所证两线段在一直线上或看似平行,用上面的方法不易,可以考虑此法。[例1]如图,△ABC中,∠C=90°,∠BAC=30°,分别以AB、AC为边在△ABC的外侧作正△ABE和正△ACD,DE与AB交于F,求证:EF=FD。(辅助线是过E作EG⊥AB,连接DG)注:构造平行四边形[例2]如图,AD是△ABC的中线,过DC上任意一点F作EG//AB,与AC和AD的延长线分别交于G和E,FH//AC,交AB于点H。求证:HG=BE。注:构造平行四边形,利用平行线分线段成比例转化证明:延长AD到A′,使DA′=AD,又∵BD=CD∴四边形BACA′是平行四边形∴BA=A′C由题设可知HFGA也是平行四边形∴HF=AG∵HF//AC,∴又∵,HF=AG,BA=A′C∴BH=EG∴四边形BEGH是平行四边形四、利用中位线证明线段相等如果已知中含有中点或等边等,用上面方法较难,可以考虑此法。[例1]如图,以△ABC的边AB、AC为斜边向外作直角三角形ABD和ACE,且使∠ABD=∠ACE,M是BC的中点。证明:DM=EM。注:辅助线取斜边中点如图所示,△ABC中,中线BD、CE相交于O,F、G分别为OB、:、利用“直角三角形斜边上的中线等于斜边的一半”证明线段相等。如果所证两线段所在的图形能构成直角三角形,并且可能构成斜边及斜边上的中线,用上面方法一时证不出来,可以考虑此法。[例]1已知:在△ABC中,M是BC的中点,CE⊥AB,BF⊥AC。求证:EM=FM[例]2如图,正方形ABCD中,E、F分别为AB、BC的中点,EC和DF相交于G,连接AG,求证:AG=AD。六、利用等腰三角形顶角的平分线或底边的高平分底边如果所证线段在一条直线上相邻,且在一个等腰三角形中,不妨用此法[例]如图
初中线段相等、比例关系的证明方法 来自淘豆网m.daumloan.com转载请标明出处.