--------------------------校验:_____________-----------------------日期:_____________双星模型、三星模型、四星模型专练双星模型、三星模型、四星模型专练1、天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银河系中很普遍。利用双星系统中两颗恒星的运动特征可推算出它们的总质量。已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。(引力常量为G)2、神奇的黑洞是近代引力理论所预言的一种特殊天体,,发现了LMCX3双星系统,它由可见星A和不可见的暗星B构成,两星视为质点,、B围绕两者连线上的O点做匀速圆周运动,它们之间的距离保持不变,如图4-,由观测能够得到可见星A的速率v和运行周期T.(1)可见星A所受暗星B的引力Fa可等效为位于O点处质量为m′的星体(视为质点)对它的引力,设A和B的质量分别为m1、m2,试求m′(用m1、m2表示).(2)求暗星B的质量m2与可见星A的速率v、运行周期T和质量m1之间的关系式;(3)恒星演化到末期,如果其质量大于太阳质量ms×105mπ×104s,质量m1=6ms,试通过估算来判断暗星B有可能是黑洞吗?×10-11N·m2/kg2,ms×1030kg)3、天体运动中,将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,并沿半径不同的同心轨道作匀速园周运动,设双星间距为L,质量分别为M1、M2,试计算(1)双星的轨道半径(2)双星运动的周期。4、如右图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速周运动,星球A和B两者中心之间距离为L。已知A、B的中心和O三点始终共线,A和B分别在O的两侧。引力常数为G。求两星球做圆周运动的周期。在地月系统中,若忽略其它星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行为的周期记为T1。但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期T2×1024kg×1022kg。求T2与T1两者平方之比。(结果保留3位小数)5、宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,.(1)试求第一种形式下,星体运动的线速度和周期.(2)假设两种形式下星体的运动周期相同,第二种形式下星体之间的距离应为多少?6、宇宙中存在由质量相等的四颗星组成的四星系统,四星系统离其他恒星较远,:一种是四颗星稳定地分布在边长为a的正方形的四个顶点上,均围绕正方形对角线的交点做匀速圆周运动,其运动周期为;另一种形式是有三颗星位于边长为a的等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行,其
双星模型、三星模型、四星模型专练 来自淘豆网m.daumloan.com转载请标明出处.