下载此文档

二进制与十进制数间的转换、二进制数的四则运算.doc


文档分类:高等教育 | 页数:约9页 举报非法文档有奖
1/9
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/9 下载此文档
文档列表 文档介绍
--------------------------校验:_____________-----------------------日期:_____________二进制与十进制数间的转换、二进制数的四则运算一、二进制数与十进制数间的转换方法1、正整数的十进制转换二进制:要点:除二取余,倒序排列解释:将一个十进制数除以二,得到的商再除以二,依此类推直到商等于一或零时为止,倒取将除得的余数,即换算为二进制数的结果例如把52换算成二进制数,计算结果如图: 52除以2得到的余数依次为:0、0、1、0、1、1,倒序排列,所以52对应的二进制数就是110100。由于计算机内部表示数的字节单位都是定长的,以2的幂次展开,或者8位,或者16位,或者32位....。于是,一个二进制数用计算机表示时,位数不足2的幂次时,高位上要补足若干个0。本文都以8位为例。那么:(52)10=(00110100)22、负整数转换为二进制要点:取反加一解释:将该负整数对应的正整数先转换成二进制,然后对其“取补”,再对取补后的结果加1即可例如要把-52换算成二进制::::11001100即:(-52)10=(11001100)23、小数转换为二进制要点:乘二取整,正序排列解释:对被转换的小数乘以2,取其整数部分(0或1)作为二进制小数部分,取其小数部分,再乘以2,又取其整数部分作为二进制小数部分,然后取小数部分,再乘以2,直到小数部分为0或者已经去到了足够位数。每次取的整数部分,按先后次序排列,就构成了二进制小数的序列循环的书写方法为在循环序列的第一位和最后一位分别加一个点标注4、二进制转换为十进制:整数二进制用数值乘以2的幂次依次相加,小数二进制用数值乘以2的负幂次然后依次相加!比如将二进制110转换为十进制:首先补齐位数,00000110,首位为0,则为正整数,那么将二进制中的三位数分别于下边对应的值相乘后相加得到的值为换算为十进制的结果   如果二进制数补足位数之后首位为1,那么其对应的整数为负,那么需要先取反然后再换算比如11111001,首位为1,那么需要先对其取反,即:-00000**********,对应的十进制为6,因此11111001对应的十进制即为-6换算公式可表示为:11111001=-00000110          =-6将二进制中的三位数分别于下边对应的值相乘后相加得到的值为换算为十进制的结果 二、二进制的四则运算二进制四则运算和十进制四则运算原理相同,所不同的是十进制有十个数码,“满十进一”,二进制只有两个数码0和1,“满二进一”。二进制运算口诀则更为简单。,在同一数位上只有四种情况: 0+0=0,0+1=1,1+0=1,1+1=10。只要按从低位到高位依次运算,“满二进一”,就能很容易地完成加法运算。例1二进制加法(1)10110+1101; (2)1110+101011。解加法算式和十进制加法一样,把右边第一位对齐,依次相应数位对齐,每个数位满二向上一位进一。 10110+1101=1000111110+101011=111001 通过计算不难验证,二进制加法也满足“交换律”,如101+1101=1101+101=10010。多

二进制与十进制数间的转换、二进制数的四则运算 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数9
  • 收藏数0 收藏
  • 顶次数0
  • 上传人镜花水月
  • 文件大小143 KB
  • 时间2019-11-12