下载此文档

芝诺悖论.doc


文档分类:文学/艺术/军事/历史 | 页数:约14页 举报非法文档有奖
1/14
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/14 下载此文档
文档列表 文档介绍
芝诺悖论芝诺悖论是古希腊数学家芝诺(ZenoofElea)提出的一系列关于运动的不可分性的哲学悖论。这些悖论由于被记录在亚里士多德的《物理学》一书中而为后人所知。芝诺提出这些悖论是为了支持他老师巴门尼德关于“存在”不动、是一的学说。这些悖论中最著名的两个是:“阿喀琉斯跑不过乌龟”和“飞矢不动”。这些方法现在可以用微积分(无限)的概念解释。两分法悖论运动是不可能的。由于运动的物体在到达目的地前必须到达其半路上的点,若假设空间无限可分则有限距离包括无穷多点,于是运动的物体会在有限时间内经过无限多点。最早应是《庄子天下篇》中,庄子提出的:“一尺之捶,日取其半,万世不竭。”阿奇里斯(Achilles)悖论“动得最慢的物体不会被动得最快的物体追上。由于追赶者首先应该达到被追者出发之点,此时被追者已经往前走了一段距离。因此被追者总是在追赶者前面。”??亚里士多德,物理学VI:9,239b15如柏拉图描述,芝诺说这样的悖论,是兴之所至的小玩笑。首先,巴门尼德编出这个悖论,用来嘲笑"数学派"所代表的毕达哥拉斯的"1>...,1-...>0"思想。然后,他又用这个悖论,嘲笑他的学生芝诺的"1=...,但1-...>0"思想。最后,芝诺用这个悖论,反过来嘲笑巴门尼德的"1-...=0,或1-...>0"思想。飞矢不动悖论一支飞行的箭是静止的。由于每一时刻这支箭都有其确定的位置因而是静止的,因此箭就不能处于运动状态。游行队伍悖论首先假设在操场上,在一瞬间(一个最小时间单位)里,相对于观众席A,列队B、C将分别各向右和左移动一个距离单位。????观众席A????队列B……向右移动????队列C……向左移动B、C两个列队开始移动,如下图所示相对于观众席A,B和C分别向右和左各移动了一个距离单位。????????????而此时,对B而言C移动了两个距离单位。也就是,队列既可以在一瞬间(一个最小时间单位)里移动一个距离单位,也可以在半个最小时间单位里移动一个距离单位,这就产生了半个时间单位等于一个时间单位的矛盾。因此队列是移动不了的。运用无穷级数求和能破解芝诺悖论吗?彭哲也(人在井天)有一种思想认为可以通过无穷级数求和的办法解决这个问题(两分法和阿基里斯追龟).我们设物最后到达终点后所走过的空间距离为1,,则物走过无穷个中点之后物在空间上所走过的距离s是:S=1/2+1/2^2+......1/2^n=(2^n-1)/2^n=1-1/2^n(n为无穷大)我们可以看出,,也就是说,=1/2+1/2^2+1/2^2S=1/2+1/2^2+1/2^3+1/2^3.............S=1/2+1/2^2+1/2^3+.........1/2^n+1/2^n=(2^n-1)/2^n+1/2^n=1也就是说,,物如果到达了终点,,,:t=1/2+1/2^2+......1/2^n=(2^n-1)/2^n=1-1/2^n可以看得出,这里的t是无限接近物实际到达终点所用的时间,,则有t=1/2+1/2^2+1/2^3+.........1/2^n+1/2^n=(2^n-1)/2^n+1/2^n=1也就是说,,物如果有最后一个中点要走,,物所用的时间只能是无限接近物实际到达终点所用的时间,,如果物能到达终点,?,,,阿基里斯追龟当然依旧."芝诺悖论"错在哪里?芝诺悖论:阿基里斯是古希腊神话里跑的最快的人,但如果他前面有一只乌龟(正从A点向前爬),:他要追上乌龟必须要经过乌龟出发的地方A,但当他追到这个地方的时候,乌龟又向前爬了一段距

芝诺悖论 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数14
  • 收藏数0 收藏
  • 顶次数0
  • 上传人iris028
  • 文件大小31 KB
  • 时间2020-01-29