拉普拉斯变换公式总结..拉普拉斯变换、连续时间系统的S域分析基本要求通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。知识要点拉普拉斯变换的定义及定义域定义单边拉普拉斯变换:正变换逆变换双边拉普拉斯变换:正变换逆变换定义域若时,则在的全部范围内收敛,积分存在,即的拉普拉斯变换存在。就是的单边拉普拉斯变换的收敛域。与函数的性质有关。拉普拉斯变换的性质线性性若,,,为常数时,则原函数微分若则式中是r阶导数在时刻的取值。原函数积分若,则式中延时性若,则s域平移若,则尺度变换若,则(a0)初值定理终值定理卷积定理若,,则有=拉普拉斯逆变换部分分式展开法首先应用海维赛展开定理将展开成部分分式,然后将各部分分式逐项进行逆变换,最后叠加起来即得到原函数。(2)留数法留数法是将拉普拉斯逆变换的积分运算转化为求被积函数在围线中所有极点的留数运算,即若为一阶级点,则在极点处的留数若为k阶级点,则系统函数(网络函数)H(s)定义系统零状态响应的拉普拉斯变换与激励的拉普拉斯变换之比称为系统函数,即冲激响应与系统函数构成变换对,即系统的频率响应特性式中,是幅频响应特性,是相频响应特性。零极点分布图式中,是系数;,,为的零点;,,,为的极点。在s平面上,用“”表示零点,“”表示极点。将的全部零点和极点画在s平面上得到的图称为系统的零极点分布图。对于实系统函数而言,其零极点要么位于实轴上,要么关于实轴成镜像对称分布。全通函数如果一个系统函数的极点位于左半平面,零点位于右半平面,而且零点与极点对于轴互为镜像,那么这种系统函数称为全通函数,此系统则为全通系统或全通网络。全通网络函数的幅频特性是常数。最小相移函数如果系统函数的全部极点和零点均位于s平面的左半平面或轴,则称这种函数为最小相移函数。具有这种网络函数的系统为最小相移网络。系统函数的求解方法①由冲激响应求得,即。②对系统的微分方程进行零状态条件下的拉普拉斯变换,然后由获得。③根据s域电路模型,求得零状态响应的像函数与激励的像函数之比,即为。系统的稳定性若系统对任意的有界输入,其零状态响应也是有界的,则此系统为稳定系统。(1)稳定系统的时域判决条件(充要条件)①若系统是因果的,则①式可改写为对于因果系统,其稳定性的s域判决条件①若系统函数的全部极点落于s左半平面,则该系统稳定;②若系统函数有极点落于s右半平面,或在虚轴上具有二阶以上的极点,则该系统不稳定;③若系统函数没有极点落于s右半平面,但在虚轴上有一阶极点,则该系统临界稳定。·例题1:求拉氏变换·例题2:求拉氏变换,拉氏变换的性质·例题3:拉氏变换的微分性质·例题4:系统函数,求解系统的响应·例题5:用拉氏变换法分析电路·例4-1求下列函数的拉氏变换分析拉氏变换有单边和双边拉氏变换,为了区别起见,本书以表示单边拉氏变换,以表示双边拉氏变换。若文字中未作说明,则指单边拉氏变换。单边拉氏变换只研究的时间函数,因此,它和傅里叶变换之间有一些差异,例如在时移定理,微分定理和初值定理等方面。本例只讨论时移定理。请注意本例各函数间的差异和时移定理的正确应用。解答例4-2求三角脉冲函数如图4-2(a)所示的象函数分析和傅里叶变换类似,求拉氏变换的时,往往要借助基本信号的拉氏变换和拉氏变换的性质,这比按拉氏变换的定义式积分简单,为比较起见,本例用多种方法求解。解答方法一:按定义式求解方法二:利用线性叠加和时移性质求解方法三:利用微分性质求解方法四:利用卷积性质求解方法一:按定义式求解方法二:利用线性叠加和时移性质求解由于于是方法三:利用微分性质求解分析信号的波形仅由直线组成,信号导数的象函数容易求得,或者信号经过几次微分后出现原信号,这时利用微分性质比较简单。将微分两次,所得波形如图4-2(b)所示。
拉普拉斯变换公式总结..模板 来自淘豆网m.daumloan.com转载请标明出处.