初一数学知识点总结初一(七年级)上册数学:有理数一、知识框二、知识点、概念总结:比0大的数叫正数。:比0小的数叫负数。: (1)凡能写成q/p(p,q为整数且p不等于0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数; (2)有理数的分类: :数轴是规定了原点、正方向、单位长度的一条直线。: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0等价于a+b=0等价于a、b互为相反数。: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2)绝对值可表示为: 绝对值的问题经常分类讨论; : (1)正数的绝对值越大,这个数越大; (2)正数永远比0大,负数永远比0小; (3)正数大于一切负数; (4)两个负数比大小,绝对值大的反而小; (5)数轴上的两个数,右边的数总比左边的数大; (6)大数-小数>0,小数-大数<0:乘积为1的两个数互为倒数; 注意:0没有倒数;若a≠0,那么a的倒数是1/a;若ab=1等价于a、b互为倒数;若ab=-1等价于a、b互为负倒数。 : (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数。: (1)加法的交换律:a+b=b+a; (2)加法的结合律:(a+b)+c=a+(b+c)。:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。: (1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。 : (1)乘法的交换律:ab=ba; (2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac。:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a/0无意义。: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n。: (1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; : 把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。:先乘方,后乘除,最后加减。初一(七年级)上册数学:代数式一、知识点、概念总结:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1. :几个单项式的和叫多项式。:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。:不含字母的项叫做常数项。(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。: (1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。(2)有两个或两个以上字母的多项式,排列时,要注意: 。,还是向外排列。(3)整式:单项式和多项式统称为整式。 : 多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。:多项式中的同类项能够合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。: (1)判断几个单项式或项,是否是同类项,就要掌握两个条件: ①所含字母相同。②相同字母的次数也相同。(2)同类项与系数无关,与字母排列的顺序也无关。(3)所有常数项都是同类项。: (1)准确的找出同类项; (2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变; (3)写出合并后的结果。: (1)如果两个同类项的系数互为相反数,合并同类项后,结
初一数学知识点总结模板 来自淘豆网m.daumloan.com转载请标明出处.