下载此文档

开题报告陈龙.doc


文档分类:论文 | 页数:约5页 举报非法文档有奖
1/5
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/5 下载此文档
文档列表 文档介绍
湖北师范学院文理学院学士学位论文(设计)开题报告单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。学生姓名陈龙所在系部数学与统计学院所在班级0806指导教师胡长松学生学号20**********:(自然科学版).(自然科学版).(自然科学版).2019开题报告:微分中值定理的背景及意义人们对微分中值定理的研究,从微积分建立之后就开始了。1637年,著名法国数学家费马在《求最大值和最小值的方法》中给出费马定理。教科书中通常将它称为费马定理。1691年,法国数学家罗尔在《方程的解法》一文中给出多项式形式的罗尔定理,1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明。以罗尔定理,拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的理论基础,它们建立了函数值与导数值之间的定量联系,中值定理的主要作用在于理论分析和证明;应用导数判断函数上升、下降、取极值、凹形、凸形和拐点等项的重要性态。此外,在极值问题中有重要的实际应用。微分中值定理是数学分析乃至整个高等数学的重要理论,它架起了利用微分研究函数的桥梁。微分中值定理从诞生到现在的近300年间,对它的研究时有出现。特别是近十年来,我国对中值定理的新证明进行了研究,仅在国内发表的文章就近60篇意义:微分中值定理是微分学理论的重要组成部分,在导数应用中起着桥梁作用,也是研究函数变化形态的纽带,因而在微分学中占有很重要的地位。通过微分学基本定理的介绍,揭示函数与其导数之间的关系,在知识结构和思想体系中建立起应用导数进一步研究函数性质的桥梁。研究目的微分中值定理是反映函数与导数之间联系的重要定理,也是微积分学的理论基础,在许多方面它都有重要的作用,在进行一些公式推导与定理证明中都有很多应用。函数与其导数是两个不同的的函数;而导数只是反映函数在一点的局部特征;如果要了解函数在其定义域上的整体性态,就需要在导数及函数间建立起联系,微分中值定理就起到这种作用。中值定理是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的工具。微分中值定理,包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理。以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的理论基础。拉格朗

开题报告陈龙 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息