下载此文档

回归模型结果分析.docx


文档分类:高等教育 | 页数:约5页 举报非法文档有奖
1/5
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/5 下载此文档
文档列表 文档介绍
回归模型结果分析为了提高回归模型的准确性,上文中我们分别按月份、颜色比、退偏振比三种情况进行回归建模,从以上的分析结果看来,按月份划分建立的回归模型反演效果较好。为了更好地对不同情况下得到的回归模型及反演结果进行对比,我们把相同情况下得到的所有反演结果表示在一张图上,并与相应的太阳光度计观测值进行对比分析。(a)(b)(c)(a)、(b)、(c)三幅图为分别按月份、颜色比和退偏振比建立回归模型后得出的所有颗粒物体积浓度的反演结果与相应太阳光度计观测值的对比分析图。图(a)数据的样本容量为250,图(b)和图(c)的样本容量为150,虽然图(a)样本容量多,但是与图(b)和图(c)相比,图(a)中数据更为集中,大部分数据的反演结果与太阳光度计观测值接近,出现误差的数据少且误差小,图(c)的反演结果略优于图(b),总体来说按月份建立的颗粒物体积浓度的回归模型最准确,而按颜色比建立的回归模型准确性较差。 (a)(b)(c)(a)、(b)、(c)三幅图为分别按月份、颜色比和退偏振比建立回归模型后得出的所有有效粒子半径的反演结果与相应太阳光度计观测值的对比分析图。图(a)样本容量较多且数据比较集中,但有一部分数据反演结果明显偏小,严重影响了回归模型的准确性,图(b)数据较离散,部分数据误差大,线性相关系数较小,图(c)个别数据误差大,虽然数据集中程度没有图(a)好。但是数据横纵坐标的差异比其他两幅图小。在确定最优样本容量时,我们发现随着样本容量的增加,线性相关系数减小,所以在无法统一样本容量且线性相关系数差异不大的情况下无法确定在哪种情况下建立的回归模型最准确。所以在建立有效粒子半径的回归模型时,我们可以按月份建立回归模型,也可以按退偏振比建立回归模型。

回归模型结果分析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数5
  • 收藏数0 收藏
  • 顶次数0
  • 上传人zhanglaifa
  • 文件大小144 KB
  • 时间2020-03-07
最近更新