、弦、圆心角的关系连接圆上任意两点的线段叫做弦圆上任意两点间的部分叫做弧顶点在圆心的角叫做圆心角根据旋转的性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置时,∠AOB=∠A′OB′,射线OA与OA′重合,OB与OB′,OA=OA′,OB=OB′,∴点A与A′重合,B与B′重合.·OAB探究·OABA′B′A′B′二、∴重合,AB与A′B′,将圆心角∠AOB绕圆心O旋转到∠A’OB’的位置,你能发现哪些等量关系?为什么?在同圆或等圆中,相等的弧所对的圆心角_____,所对的弦________;在同圆或等圆中,相等的弦所对的圆心角______,、弦与圆心角的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,,两个圆心角、两条弧、两条弦中有一组量相等,、定理如图,AB、CD是⊙O的两条弦.(1)如果AB=CD,那么___________,_________________.(2)如果,那么____________,_____________.(3)如果∠AOB=∠COD,那么_____________,_________.(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?为什么?·CABDEFOAB=CDAB=CD四、练习OE﹦OF证明:∵OE⊥ABOF⊥CD∵AB﹦CD∴AE﹦CF∵OA﹦OC∴RT△AOE≌RT△COF∴OE﹦OF证明:∴AB=∠ACB=60°,∴AB=BC=CA.∴∠AOB=∠BOC=∠AOC.·ABCO五、例题∵例1如图,在⊙O中,,∠ACB=60°,求证∠AOB=∠BOC=∠AOC如图,AB是⊙O的直径,∠COD=35°,求∠AOE的度数.·AOBCDE解:六、练习∵八、作业1、教材87页 2,3, 2、完成练习册相应作业。
狐、弦、圆心角2 来自淘豆网m.daumloan.com转载请标明出处.