一元一次不等式(组)一、知识导航图毛二、课标要求考点课标要求知识与技能目标了解理解掌握灵活应用一元一次不等式组理解并掌握不等式的性质,理解它们与等式性质的区别∨∨∨能用数形结合的思想理解一元一次不等式(组)解集的含义∨∨∨正确熟练地解一元一次不等式(组),并会求其特殊解∨∨能用转化思想、数形结合的思想解一元一次不等式(组)的综合题、应用题∨∨∨三、,关键是分析判定不等号的变化,变化的依据是不等式的性质,特别注意的是,不等式两边都乘以(或除以)同一个负数时,要改变不等号方向;反之,若不等式的不等号方向发生改变,则说明不等式两边同乘以(或除以),在判断不等式成立与否或由不等式变形求某些字母的范围时,(组)解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是,不等式两边所乘以(或除以)的数的正负,并根据不同情况灵活运用其性质,不等式组解集的确定方法:若a<b,则有:(1)的解集是x<a,即“小小取小”.(2)的解集是x>b,即“大大取大”.(3)的解集是a<x<b,即“大小小大取中间”.(4)的解集是空集,即“大大小小取不了”.一元一次不等式(组)常与分式、根式、一元二次方程、函数等知识相联系,解决综合性问题。(组)的特殊解不等式(组)的解往往是有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先是确定不等式(组)的解集,(组)解应用题注意分析题目中的不等量关系,考查的热点是与实际生活密切相联的不等式(组)、(组)解应用题例5一元一次不等式(组)【课前热身】【知识点链接】:用连接起来的式子叫不等式;使不等式成立的的值叫做不等式的解;:(1)若<,则+;(2)若>,>0则(或);(3)若>,<0则(或).:只含有未知数,且未知数的次数是且系数的不等式,称为一元一次不等式;一元一次不等式的一般形式为或;解一元一次不等式的一般步骤:去分母、、移项、、:,几个不等式的解集的,:(已知)的解集是,即“小小取小”;的解集是,即“大大取大”; 的解集是,即“大小小大中间找”; 的解集是空集,即“大大小小取不了”.:(1)不等式的解集用数轴来表示时,注意“空心圆圈”和“实心点”的不同含义.(2)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式(或)()的形式的解集: 当时,(或) 当时,(或) 当时,(或)【典例精析】例1例2例3【中考演练】一元一次不等式(组)及其应用【知识点链接】(组)的特殊解:不等式(组)的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,(组)解应用题的一般步骤: ①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②找:找出能够表示应用题全部含义的一个不等关系;③设:设未知数(一般求什么,就设什么为;④列:根据这个不等关系列出需要的代数式,从而列出不等式(组);⑤解:解所列出的不等式(组),写出未知数的值或范围;⑥答:检验所求解是否符合题意,写出答案(包括单位).:判断不等式是否成立,关键是分析不等号的变化,其根据是不等式的性质.【典例精析】例1例2例3【中考演练】基础达标验收卷一、选择题二、填空题三、解答题能力提高练习学科内综合题二、、分类讨论问题四、实际应用题答案:基础达标验收卷能力提高练习三年中考数学不等式与不等式组及不等式应用精选类型一:不等式性质1(2009柳州),则下列各式中一定成立的是()A. B. C. (2009宜昌)如果<0,那么下列判断正确的是().<0,b<>0,b>≥0,b≤<0,b>0或a>0,b<03(2008肇庆)下列式子正确的是()A.>0B.≥>―1>14(2008黄石)若,则的大小关系为()A. B. C. (2008恩施)如果a<b<0,下列不等式中错误的是()A.>
初一下册一元一次不等式应用题 来自淘豆网m.daumloan.com转载请标明出处.