西安科技大学
硕士学位论文
基于多特征结合与支持向量机集成的噪声检测与图像去噪
姓名:宁宁
申请学位级别:硕士
专业:计算机应用技术
指导教师:付燕
2011
论文题目: 基于多特征结合与支持向量机集成的噪声检测与图像去噪
专业: 计算机应用技术
硕士生: 宁宁(签名)
指导教师: 付燕(签名)
摘要
图像去噪是图像处理中关键的预处理环节。由于在含噪图像中,大部分噪声和图像
细节分布在高频区域,不易区分,导致去噪时会不同程度地损坏图像的细节信息。因此,
如何能在去噪的同时最大限度地保持细节信息是图像去噪研究的重点。
针对在仅依赖单个图像特征时,基于支持向量机(Support Vector Machine, SVM)的图
像去噪方法未能获得较好的去噪效果且会导致噪声点的识别率较低、分类器性能较差的
问题,本文在分析总结图像去噪相关算法的基础上,探索了一种基于多特征结合与支持
向量机的图像去噪方法。该方法根据图像中相邻像素的相关性及椒盐噪声的特点,利用
多种特征相结合的方式来全面的描述像素点的属性,从而准确地区分噪声点和非噪声
点。实验结果表明,基于多特征结合与支持向量机的图像去噪方法的去噪效果更优。此
外,相对于基于单个特征的支持向量机分类器,基于多特征结合的支持向量机分类器对
噪声点的识别率较高,且分类器性能更优。
鉴于支持向量机集成(Support Vector Machine Ensemble, SVM Ensemble)的分类性能
优于单个支持向量机,且稳定性、泛化能力更好,本文将支持向量机集成应用于图像去
噪,提出了一种基于多特征结合与支持向量机集成的图像去噪方法。首先,根据图像中
相邻像素的相关性及椒盐噪声的特点,提取含噪图像中的多种特征,并将其结合构成样
本集;其次,对样本集进行归一化处理,并采用同时扰动训练样本和分类器模型参数的
二重扰动机制及多数投票法构造支持向量机集成分类器;然后,利用支持向量机集成分
类器识别含噪图像中的噪声点,再利用支持向量回归机对噪声点的灰度值进行回归预
测;最后,重构图像达到去噪的目的。实验结果表明,该方法能进一步提高去噪效果,
且在去噪的同时能较好地保持图像的细节信息,并在低噪声比下尤为有效。此外,与基
于多特征结合的支持向量机分类器相比,基于多特征结合的支持向量机集成分类器具有
更好的分类性能、稳定性和泛化能力。
关键词: 图像去噪;椒盐噪声;多特征结合;支持向量机集成;支持向量回归机
研究类型: 应用研究
Subject : Noise Detection and Image De-noising Based on Multi-feature
Combination and Support Vector Machine Ensemble
Specialty : Computer Application Technology
Name : Ning Ning (Signature)
Instructor : Fu Yan (Signature)
ABSTRACT
Image de-noising is a key pretreatment link before image is processed. For noisy image,
most noise and image details are hard to be distinguished because they distribute in high
frequency area, which leads to the loss of image detail information in different degree while
noise points are removed. Therefore, how to retain image details to the utmost extent while
noise points are removed is a research focus.
Aiming at the problem that the approach for removing noise from images based on SVM
fails to gain better de-noising effect and leads to low performance of classifier and noise
recognition rate when only rely on a single image feature,
基于多特征结合与支持向量机集成的噪声检测与图像去噪 来自淘豆网m.daumloan.com转载请标明出处.