⒈身为老师要理清用比例解决问题的方法本质。教方法的老师,却不知道方法的本质,说起来象无稽之谈。可事实上包括我在内的很多老师在初次教学这个内容的时候,恰恰没有弄清楚这个方法到底该怎样做。就以例5为例,学生可以很轻松的用以前学过的方法解决这个归一问题,桥梁就是不变的“单价”,在引导学生用比例解决问题的时候,问题就出来了:是先根据单价不变,得到等式:总价/用水吨数=总价/用水吨数,明确成正比例;还是因为单价不变,总价和用水吨数成正比例,所以它们的比值相等。第一次试教的时候,我没有觉得这有什么区别,选择了简单的第一种方式。刚开始过程很流畅,但我发现学生在方法表述上总不愿意说到成什么比例关系,仿佛这个比例是跟本题是不相干的内容,最后在比较和练习上学生也无法清楚的表述出方法和规律,尤其是倒过来后的方程(=X/10用8/=10/X)很多孩子都不能接受。不仅没有体会到用比例的好处,反而觉得还要写“解设”真是麻烦。惨痛的失败后我开始认真的分析和检讨,发现学生根据单价不变列出等式,其实用的是以前学过的方法,以单价作为桥梁,比例成了“鸡肋”,方程倒过来后,就不等于单价了,所以很多孩子认为这是不对的。作为六年级的孩子,之所以学习用比例解决问题,就是要让他们站在理解量之间的普遍关系,一般规律的基础上,更方便快捷的去解决实际问题。在分析之后,我采用了第二种方式进行第二次教学,首先明确成正反比例的量具备什么样的特征?(比值相等或乘积相等),只要判断出题目中的量成正比例或反比例关系,就可以列出比值相等或乘积相等的等式。这样一来,学生做题就不是具体问题具体分析了,他们有规可循:只要路程一定,就说明时间和速度成反比例,结合数据我就可以列出一个相应时间和速度乘积相等的方程。教学之后,学生能够很好的应用比例知识解决问题,尤其是一些基础的数量关系,如路程=速度×时间,总价=单价×数量等能快速准确的判断出比例关系,列出等式。当然对于并不常见的数量关系,学生在判断比例关系上出现了困难。但总体来说,学生在运用比例关系列出方程这个方法的掌握上还是比较成功的。⒉总结和比较中,掌握用比例解决问题的一般规律既然想让他们有规可循,那么就要让他们牢牢地掌握这个规律。因此,在教学中我首先注重了方法与步骤的总结,这个过程也不是那么容易的,都是以前学过的题目,所以孩子们很容易就丢开比例,而用以前的方法去思考问题。因此,在复习中,我的重点不是放在成什么比例,而是成正或反比例的量有什么样的特征,先分散一下难点。分析题目的时候用“成什么比例关系?”“根据这样的比例关系你能列出一个等式吗?”这个两个问题将孩子们的注意力放在比例上。问题解决之后,我还设计了一个回头梳理的过程,可以说让学生对用比例解决问题的方法和过程有了一个强烈的印象。之后的例6上我放手让学生独立用比例知识解决,练习中设计了一个分别用正反比例解决问题的对比,这无疑是整节课的小高潮,学生答的非常精彩,基本抓住了用比例解决问题的一般规律。⒊在辨别中,体会用比例解决问题方法灵活,计算简便学生在前面的总结和比较中,学生已经体会到了用比例解决问题有规可循,是解决问题的好方法。但这还不够,因为以前的方法也很简单啊。因此需要更多的冲突来让学生体会到比和比例的基本性质会使用比例解决问题是多么的灵活和简便。第一次试教的时候我采取的是学生做,然后进行讲评比较
《用比例解决问题》教学反思 来自淘豆网m.daumloan.com转载请标明出处.