基丁神经网络的船舶横摇运动预报研究捅要船舶在海浪中会产生六自由度摇荡的复杂运动,具有很强的随机性和非线性,因此船舶摇荡运动预报对于船舶航行有着重要的意义。目前由于对海浪中船舶摇荡运动的机理认识不清,故实船摇荡的时域预报仍限于10秒之内,制约了其应用。本论文立足于舰船的横摇运动预报,通过发掘横摇运动中所蕴含的非线性动力学特性,证实其可预报性及混沌特性,以期有效提高预报精度和增加预报时长,使之能用于船舶航海实践。主要完成的工作有: 。建立了基于相空间重构理论的前向神经网络和递归神经网络的预报模型,使网络本身融入了混沌的确定性规则,提高了神经网络用于船舶横摇运动时间序列预报的效果。将混沌增加到网络中,除了上述方法外还可以选用混沌神经网络来映射船舶横摇时间序列所蕴含的混沌特性,进行预报,本文针对一种混沌神经网络进行优化修正后将其用于船舶横摇预报。但与基于相空问重构的神经网络预报相比,该网络预报精度低,而且目前对于混沌神经网络的研究尚不成熟,实现起来比较困难,而基于相空间重构的预报方法简单可行。 ,优化了二阶对角递归网络参数,提出了基于相空间重构的对角递归和二阶对角递归网络的预报模型,并用于船舶横摇预报,预报效果好于未重构的网络,且优化后的二阶对角递归网络的具有更好的预报效果。 ,提出了一种新的预报方法一使用回声状态网络进行船舶横摇运动预报,该方法有效预报时间能达到17秒以上,且比已有的预报方法的预报精度要高近4倍。 ,传统的单一预报方法自适应能力较差,提出了运用了非负约束的冗余方法和协整理论方法对模型进行筛选的组合预报,并给出单项模型的筛选过程,避免了目前仅凭个人经验对模型进行选取。达到提高预报精度的目的。最后给出了船舶摇荡运动预报的性能指标及评价准则,对本论文中所用的方法进行了定量的评价对比。证实本论文所提方法的有效性。关键词:船舶横摇运动;相空间重构;神经网络;组合预报;预报评价哈尔滨工程大学博士学位论文 Abst ract Ships inthewaves plex movements ofsixdegrees offreedom,which has strong randomness and thenon.- theprediction ofshipsway motion forship navigation hasanimportant ,due tounclear understanding oftheship motion mechanism inwaves,the prediction of timedomain forship sway motions isfimited to 0seconds,hereby paper based on theship rollmotion prediction aims tofind outthenonlinearity dynamics heldintheship rollmotion andconfirm thecharacteristics ofpredictability andchaos,.in order toimprove uracy offorecast andprolong thetimelength ofprediction,,which can be used inthepractice ofshipnavigation. The mainresearch work iS asf01lows: proposed thattheship rollmotion oftime seriesis achaoticsystemthrough theanalysis ofitscharacteristics ofpredictability and feedforward works and recurrent works prediction model based on chaostheory are introduced and makes work possessing achaoticdeterministic rules,which improves uracy of prediction forship rollmotion by theapplication addition totheabove method
基于神经网络的船舶横摇运动预报研究 来自淘豆网m.daumloan.com转载请标明出处.