°,则其顶角为()°°°°°或135°【答案】D【解析】①如图,等腰三角形为锐角三角形,∵BD⊥AC,∠ABD=45°,∴∠A=45°,即顶角的度数为45°.②如图,等腰三角形为钝角三角形,∵BD⊥AC,∠DBA=45°,∴∠BAD=45°,∴∠BAC=135°.故选:,在△ABC中,∠A=36°,AB=AC,BD是△=BC,连接DE,则图中等腰三角形共有()【答案】D【解析】在△ABC中,∠A=36°,AB=AC,求得∠ABC=∠C=72°,且△ABC是等腰三角形;因为CD是△ABC的角平分线,所以∠ACD=∠DCB=36°,所以△ACD是等腰三角形;在△BDC中,由三角形的内角和求出∠BDC=72°,所以△BDC是等腰三角形;所以BD=BC=BE,所以△BDE是等腰三角形;所以∠BDE=72°,∠ADE=36°,所以△,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()°°°°【答案】A【解析】在△ABC中,AB=AC,∠A=30°,根据等腰三角形的性质可得∠ABC=∠ACB=75°,所以∠ACE=180°-∠ACB=180°-75°=105°,根据角平分线的性质可得∠DBC=°,∠ACD=°,即可得∠BCD=°,根据三角形的内角和定理可得∠D=180°-∠DBC-∠BCD=180°-°-°=15°,,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()°°°°【答案】D【解析】∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选:,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,则∠BDC的度数为____.【答案】72°【解析】∵AB=AC,CD平分∠ACB,∠A=36°,∴∠B=(180°-36°)÷2=72°,∠DCB=36°.∴∠BDC=72°.故答案为:72°△ABC中,AB=AC,且BC=8cm,BD是腰AC的中线,△ABC的周长分为两部分,已知它们的差为2cm,则等腰三角形的腰长为__________.【答案】10cm或6cm【解
2020八年级数学下册第一章三角形的证明第1课时等腰三角形重点练北师大版 来自淘豆网m.daumloan.com转载请标明出处.