语音识别综述.doc语音识别综述语音识别是一门交叉学科,语音识别正逐步成为信息技术中人机接口的关键技术,语音识别技术与语音合成技术结合使人们能够甩掉键盘,通过语音命令进行操作。语音技术的应用己经成为一个具有竞争性的新兴高技术产业。与机器进行语音交流,让机器明白你说什么,这是人们长期以来梦寐以求的事情。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门交叉学科。近二十年来,语音识别技术取得显著进步,开始从实验室走向市场。人们预计,未来10年内,语音识别技术将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域。语音识别听写机在一些领域的应用被美国新闻界评为1997年计算机发展十件大事之一。很多专家都认为语音识别技术是2000年至2010年间信息技术领域十大重要的科技发展技术之一。一、语音识别的发展历史国外研究历史及现状语音识别的研究工作可以追溯到20世纪50年代AT&T贝尔实验室的Audry系统,它是第一个可以识别十个英文数字的语音识别系统。但真正取得实质性进展,并将其作为一个重要的课题开展研究则是在60年代末70年代初。这首先是因为计算机技术的发展为语音识别的实现提供了硬件和软件的可能,更重要的是语音信号线性预测编码(LPC)技术和动态时间规整(DTW)技术的提出,有效的解决了语音信号的特征提取和不等长匹配问题。这一时期的语音识别主要基于模板匹配原理,研究的领域局限在特定人,小词汇表的孤立词识别,实现了基于线性预测倒谱和DTW技术的特定人孤立词语音识别系统;同时提出了矢量量化(VQ)和隐马尔可夫模型(HMM)理论。随着应用领域的扩大,小词汇表、特定人、孤立词等这些对语音识别的约束条件需要放宽,与此同时也带来了许多新的问题:第一,词汇表的扩大使得模板的选取和建立发生困难;第二,连续语音中,各个音素、音节以及词之间没有明显的边界,各个发音单位存在受上下文强烈影响的协同发音(Co-articulation)现象;第三,非特定人识别时,不同的人说相同的话相应的声学特征有很大的差异,即使相同的人在不同的时间、生理、心理状态下,说同样内容的话也会有很大的差异;第四,识别的语音中有背景噪声或其他干扰。因此原有的模板匹配方法已不再适用。实验室语音识别研究的巨大突破产生于20世纪80年代末:人们终于在实验室突破了大词汇量、连续语音和非特定人这三大障碍,第一次把这三个特性都集成在一个系统中,比较典型的是卡耐基梅隆大学(CarnegieMellonUniversity)的Sphinx系统,它是第一个高性能的非特定人、大词汇量连续语音识别系统。这一时期,语音识别研究进一步走向深入,其显著特征是HMM模型和人工神经元网络(ANN)在语音识别中的成功应用。HMM模型的广泛应用应归功于AT&TBcll实验室Rabincr等科学家的努力,他们把原本艰涩的HMM纯数学模型工程化,从而为更多研究者了解和认识,从而使统计方法成为了语音识别技术的主流。统计方法将研究者的视线从微观转向宏观,不再刻意追求语音特征的细化,而是更多地从整体平均(统计)的角度来建立最佳的语音识别系统。在声学模型方面,以Markov链为基础的语音序列建模方法HMM(隐式Markov链)比较有效地解决了语音信号短时稳定、长时时变的特性,并且能根据一些基木建模单元构造成连续语音
语音识别综述 来自淘豆网m.daumloan.com转载请标明出处.