上节课内容总结统计推断基本概念统计模型:参数模型与非参数模型统计推断/模型估计:点估计、区间估计、假设检验估计的评价:无偏性、一致性、有效性、MSE偏差、方差、区间估计CDF估计:点估计、偏差、方差及区间估计统计函数估计点估计区间估计/标准误差影响函数BootstrapBootstrap也可用于偏差、置信区间和分布估计等1本节课内容重采样技术(resampling)Bootstrap刀切法(jackknife)2引言是一个统计量,或者是数据的某个函数,数据来自某个未知的分布F,我们想知道的某些性质(如偏差、方差和置信区间)假设我们想知道的方差如果的形式比较简单,可以直接用上节课学习的嵌入式估计量作为的估计例:,则,其中,其中问题:若的形式很复杂(任意统计量),如何计算/估计?3Bootstrap简介Bootstrap是一个很通用的工具,用来估计标准误差、置信区间和偏差。由BradleyEfron于1979年提出,用于计算任意估计的标准误差术语“Bootstrap”来自短语“topulloneselfupbyone’sbootstraps”(源自西方神话故事“TheAdventuresofBaronMunchausen”,男爵掉到了深湖底,没有工具,所以他想到了拎着鞋带将自己提起来)计算机的引导程序boot也来源于此意义:不靠外界力量,而靠自身提升自己的性能,翻译为自助/自举1980年代很流行,因为计算机被引入统计实践中来4Bootstrap简介Bootstrap:利用计算机手段进行重采样一种基于数据的模拟(simulation)方法,用于统计推断。基本思想是:利用样本数据计算统计量和估计样本分布,而不对模型做任何假设(非参数bootstrap)无需标准误差的理论计算,因此不关心估计的数学形式有多复杂Bootstrap有两种形式:非参数bootstrap和参数化的bootstrap,但基本思想都是模拟5重采样通过从原始数据进行n次有放回采样n个数据,得到bootstrap样本对原始数据进行有放回的随机采样,抽取的样本数目同原始样本数目一样如:若原始样本为则bootstrap样本可能为…6计算bootstrap样本重复B次,,每个整数的取值范围为[1,n],选择每个[1,n]之间的整数的概率相等,:Web上有matlab代码:BOOTSTRAPMATLABTOOLBOX,,.:bootstrp7Bootstrap样本在一次bootstrap采样中,某些原始样本可能没被采到,另外一些样本可能被采样多次在一个bootstrap样本集中不包含某个原始样本的概率为一个bootstrap样本集包含了大约原始样本集的1-=,,当时,根据大数定律,也就是说,如果我们从中抽取大量样本,我们可以用样本均值来近似当样本数目B足够大时,样本均值与期望之间的差别可以忽略不计9模拟更一般地,对任意均值有限的函数h,当有则当时,有用模拟样本的方差来近似方差10
统计学bootstrap 来自淘豆网m.daumloan.com转载请标明出处.