下载此文档

地球潮汐理论涨潮高度计算公式质疑.doc


文档分类:高等教育 | 页数:约8页 举报非法文档有奖
1/8
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/8 下载此文档
文档列表 文档介绍
地球潮汐理论涨潮高度计算公式的质疑我撰写的《地下熔岩层厚度及平均流速的计算》一文最近在本栏目发布后,读者王万欣先生曾询问我其中计算地球涨潮高度的公式(1)的出处;我如实告诉他该公式我是在30多年前,在北京图书馆有关潮汐理论的书籍中抄录得来的;当时忘记记录出处,现已无从考查。他反问说,既然是重要理论计算的通用公式,就不可能只在某一本书中有,其它书本上就没有。我感觉他似乎怀疑我在作假,我又没有什么方法辩解,所以决定自己亲自来推导这个公式,以证明我的清白;同时觉得这样重要的公式竟然在别的有关书籍中都找不到,也有再推导的必要。经过几天思考和计算,推导终于成功;证明该公式是完全正确的。但却发现,相关的体潮落差的计算公式有严重问题,其计算误差超过一个数量级。现将有关分析计算介绍于下,供大家参考,并希望批评指正。。如图1所示,S为地球表面一动点,它与地心的向径与地月向径的夹角为θ。F1为该点单位质量物质所受月球引力,因夹角α的最大值小于1度,故可近似看作它与地月向径平行。F2为S点单位质量物质受地球绕地月公转轴线旋转所产生的离心力。r为S点离地球中心线的垂直距离。r0为地月共同质心与地心的距离。R为地球半径。为简化涨潮高度的计算,现假设地球表面为理想光滑的球面,全球覆盖较厚的粘度很小的海水。在地心处单位质量物质所受月球引力与地球公转离心力完全相等,故可得:式中ω1:地球绕地月公转轴线旋转的角速度(s-1);G:引力常数,×10-11m3?s-2?kg-1;M:月球质量,×1022kg;L:地月距离,×108m。F1及F2分别在S点向径上的分量F1S和F2S可按下列两式计算:将(1)式代入(3)式可得:(2)式及(4)式分别对θ求微商可得:按上列两式求得的向量之和,应等于大小相同方向相反的单位质量物质所受重力g对θ的微商才能保持平衡,故可得:由于(5)式分母中小括号内的后一项远小于1,故将小括号部分展开成级数,并略去所有高次项,使公式得以简化,然后将(5)式及(6)式代入上式并整理后可得:上式右端小括号内中间一项因远小于前一项和后一项,故可忽略不计。然后两端积分可得:上式左端积分号下本来应含有R-3h一项,但因它在整个积分区间的变化率不足百万分之几,故把它看作常数而移项到了右端。左端积分后实际就是随θ而变的涨潮高度,设它以则(10)式可改写为:分析上式可知,积分常数C就是θ=π/2时的涨潮高度。因此根据地球涨潮后总体积不变的条件可知,将地球半径取为(R+C)所求得的潮汐椭球体的体积,应与地球原来的体积相等。故根据所列出的等式即可解得积分常数C。如图2所示,设地球半径为(R+C),现用半锥角为θ及θ+dθ的两个圆锥面在潮峰上切取一环状微元体,那么该处潮汐高度h可按下式计算:该环形微元体的体积可按下式计算:两潮峰的体积可由上式在0~π区间内积分求得:根据前面的设定可得如下等式:由上式解得C值后,并忽略小括号中微小的后一项可得:将上式代入(12)式可得地球月潮涨潮高度计算公式的最后表达式:(18)及(11)的分析和讨论公式(18)是按地月绕通过地月质心的公转轴线旋转(参看图1)推导出来的;但可以证明,该式同样适用于地球在垂直平面内起潮高度的计算。因此,地球涨潮后实际上

地球潮汐理论涨潮高度计算公式质疑 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数8
  • 收藏数0 收藏
  • 顶次数0
  • 上传人scuzhrouh
  • 文件大小103 KB
  • 时间2020-08-03
最近更新