人脸识别技术大总结本页是最新发布的《人脸识别技术大总结》的详细范文参考文章,觉得应该跟大家分享,这里给大家转摘到。篇一:人脸识别技术的主要研究方法1、绪论人脸识别是通过分析脸部器官的唯一形状和位置来进行身份鉴别。人脸识别是一种重要的生物特征识别技术,应用非常广泛。与其它身份识别方法相比,人脸识别具有直接、友好和方便等特点,因而,人脸识别问题的研究不仅有重要的应用价值,而且在模式识别中具有重要的理论意义,目前人脸识别已成为当前模式识别和人工智能领域的研究热点。本章将简单介绍几种人脸识别技术的研究方法。关键词:人脸识别2、人脸识别技术的主要研究方法目前在国内和国外研究人脸识别的方法有很多,常用的方法有:基于几何特征的人脸识别方法、基于代数特征的人脸识别方法、基于连接机制的人脸识别方法以及基于三维数据的人脸识别方法。:、基于几何特征的人脸识别方法基于特征的方法是一种自下而上的人脸检测方法,由于人眼可以将人脸在不此研究人员认为有一个潜在的假设:人脸或人脸的部件可能具有在各种条件下都不会改变的特征或属性,如形状、肤色、纹理、边缘信息等。基于特征的方法的目标就是寻找上述这些不变特征,并利用这些特征来定位入脸。这类方法在特定的环境下非常有效且检测速度较高,对人脸姿态、表情、旋转都不敏感。但是由于人脸部件的提取通常都借助于边缘算子,因此,这类方法对图像质量要求较高,对光照和背景等有较高的要求,因为光照、噪音、阴影都极有可能破坏人脸部件的边缘,从而影响算法的有效性。模板匹配算法首先需要人TN作标准模板(固定模板)或将模板先行参数化(可变模板),思想汇报专题然后在检测人脸时,计算输入图像与模板之间的相关值,这个相关值通常都是独立计算脸部轮廓、眼睛、鼻子和嘴各自的匹配程度后得出的综合描述,最后再根据相关值和预先设定的阈值来确定图像中是否存在人脸。基于可变模板的人脸检测算法比固定模板算法检测效果要好很多,但是它仍不能有效地处理人脸尺度、姿态和形状等方面的变化。基于外观形状的方法并不对输入图像进行复杂的预处理,也不需要人工的对人脸特征进行分析或是抽取模板,而是通过使用特定的方法(如主成分分析方法(PCA)、支持向量机(SVM)、神经网络方法(ANN)等)对大量的人脸和非人脸样本组成的训练集(一般为了保证训练得到的检测器精度,非人脸样本集的容量要为人脸样本集的两倍以上)进行学习,再将学习而成的模板或者说分类器用于人脸检测。因此,这也是j种自下而上的方法。这种方法的优点是利用强大的机器学习算法快速稳定地实现了很好的检测结果,并且该方法在复杂背景下,多姿态的人脸图像中也能得到有效的检测结果。但是这种方法通常需要遍历整个图片才能得到检测结果,并且在训练过程中需要大量的人脸与非人脸样本,以及较长的训练时间。近几年来,针对该方法的人脸检测研究相对比较活跃。4、基于代数特征的人脸识别方法在基于代数特征的人脸识别中,每一幅人脸图像被看成是以像素点灰度为元素的矩阵,用反映某些性质的数据特征来表示人脸的特征。设人脸图像),(yxI为二维NM×灰度图像,范文写作同样可以看成是NMn×=维列向量,可视为NM×维空间中的一个点。但这样的一个空间中,并不是空间中的每一部分都包含有价值的信息,故一般情况下,需要通过某种变换,将如此巨大的空间中的这些点映射到一个维数较低的空间中去。然后利用对图像投影间的某种度量来确定图像间的相似度,最常见的就是各种距离度量。在基于代数特征的人脸识别方法中,主成分分析法(PCA)和Fisher线性判别分析(LDA)是研究最多的方法。本章简要介绍介绍了PCA。完整的PCA(ponentAnalysis)人脸识别的应用包括四个步骤:人脸图像预处理;读入人脸库,训练形成特征子空间;把训练图像和测试图像投影的上一步骤中得到的子空间上;选择一定的距离函数进行识别。详细描述如下:,将库中的每个人选择一定数量的图像构成训练集,设归一化后的图像是n×n,按列相连就构成n2维矢量,可视为n2维空间中的一个点,可以通过K-L变换用一个低维子空间描述这个图像。,即或者写成:式中xi为第i个训练样本的图像向量,|l为训练样本的均值向量,M为训练样本的总数。为了求n2×n2维矩阵∑的特征值和正交归一化的特征向量,要直接计算的话,计算量太大,由此引入奇异值分解定理来解决维数过高的问题。(AVD)定理计算图像的特征值和特征向量设A是一个秩为r的行n×r维矩阵,则存在两个正交矩阵和对角阵:其中凡!其中为矩阵的非零特征值,,得到一组坐标系数,就对应于
人脸识别技术大总结 来自淘豆网m.daumloan.com转载请标明出处.