2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,)(1)曲线的斜渐近线方程为_____________.(2)微分方程满足的解为____________.(3)设函数,单位向量,则=.________.(4)设是由锥面与半球面围成的空间区域,是的整个边界的外侧,则____________.(5)设均为3维列向量,记矩阵,,如果,那么.(6)从数1,2,3,4中任取一个数,记为,再从中任取一个数,记为,则=、选择题(本题共8小题,每小题4分,,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数,则在内(A)处处可导(B)恰有一个不可导点(C)恰有两个不可导点(D)至少有三个不可导点(8)设是连续函数的一个原函数,表示的充分必要条件是则必有(A)是偶函数是奇函数(B)是奇函数是偶函数(C)是周期函数是周期函数(D)是单调函数是单调函数(9)设函数,其中函数具有二阶导数,具有一阶导数,则必有(A) (B) (C) (D)(10)设有三元方程,根据隐函数存在定理,存在点的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数(B)可确定两个具有连续偏导数的隐函数和(C)可确定两个具有连续偏导数的隐函数和(D)可确定两个具有连续偏导数的隐函数和(11)设是矩阵的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是(A) (B) (C) (D)(12)设为阶可逆矩阵,交换的第1行与第2行得矩阵分别为的伴随矩阵,则(A)交换的第1列与第2列得(B)交换的第1行与第2行得(C)交换的第1列与第2列得(D)交换的第1行与第2行得(13),则(A) (B)(C) (D)(14)设为来自总体的简单随机样本,为样本均值,为样本方差,则(A) (B)(C) (D)三、解答题(本题共9小题,、证明过程或演算步骤)(15)(本题满分11分)设,(16)(本题满分12分)求幂级数的收敛区间与和函数.(17)(本题满分11分)如图,曲线的方程为,点是它的一个拐点,直线与分别是曲线在点与处的切线,,计算定积分(18)(本题满分12分)已知函数在上连续,在内可导,:(1)存在使得.(2)存在两个不同的点,使得(19)(本题满分12分)设函数具有连续导数,在围绕原点的任意分段光滑简单闭曲线上,曲线积分的值恒为同一常数.(1)证明:对右半平面内的任意分段光滑简单闭曲线有.(2)求函数的表达式.(20)(本题满分9分)已知二次型的秩为2.(1)求的值;(2)求正交变换,把化成标准形.(3)求方程=0的解.(21)(本题满分9分)已知3阶矩阵的第一行是不全为零,矩阵(为常数),且,求线性方程组的通解.(22)(本题满分9分)设二维随机变量的概率密度为
2005考研数一真题与解析 来自淘豆网m.daumloan.com转载请标明出处.