(2011-12-0912:19:11)转载▼标签:文化分类:软件介绍 线性回归数据(全国各地区能源消耗量与产量)来源,可点击协会博客数据挖掘栏:国泰安数据服务中心的经济研究数据库。,包括数据清理和描述性数据汇总,数据集成和变换,数据归约,数据离散化等。本次实习主要涉及的数据预处理只包括数据清理和描述性数据汇总。一般意义的数据预处理包括缺失值填写和噪声数据的处理。于此我们只对数据做缺失值填充,但是依然将其统称数据清理。“打开数据文档”,将xls格式的全国各地区能源消耗量与产量的数据导入SPSS中,如图1-1所示。 图1-1导入数据导入过程中,各个字段的值都被转化为字符串型(String),我们需要手动将相应的字段转回数值型。单击菜单栏的“”-->“”将所选的变量改为数值型。如图1-2所示: 图1-2 。单击“”-->“”,将检查所输入的数据的缺失值个数以及百分比等。如图1-3所示: 图1-3缺失值分析能源数据缺失值分析结果如表1-1所示: 单变量统计 单变量统计 表2-1能源消耗量与产量数据缺失值分析 表1-1能源消耗量与产量数据缺失值分析SPSS提供了填充缺失值的工具,点击菜单栏“”-->“”,即可以使用软件提供的几种填充缺失值工具,包括序列均值,临近点中值,临近点中位数等。结合本次实习数据的具体情况,我们不使用SPSS软件提供的替换缺失值工具,主要是手动将缺失值用零值来代替。 ,我们关心数据的中心趋势和离中趋势,根据这些统计值,可以初步得到数据的噪声和离群点。中心趋势的量度值包括:均值(mean),中位数(median),众数(
多元线性回归分析案例 来自淘豆网m.daumloan.com转载请标明出处.