下载此文档

《探索性因素分析》.ppt


文档分类:论文 | 页数:约15页 举报非法文档有奖
1/15
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/15 下载此文档
文档列表 文档介绍
探索性因素分析 ,我们需要通过因子分析技术来识别测量变量中的潜在结构,在这个过程中应该首先使用EFA,然后再进行验证性因子分析(confirmatoryfactoranalysis)。EFA对因子模型没有先验,假设任何变量都有可能与任何公因子相关联,目标是用少数几个潜在的、不可观测的随机变量(因子)来描述原始变量之间的关系。..操作KMO检验和球形检验用于检验数据是否适合进行因子分析,一般来说,KMO>,球形检验显著,说明数据适合进行因子分析。抽取方法::主成分分析能够将大量的相关变量转化为一组很少的不相关变量,这些无关变量称为主成分。主成分分析是将一组变量通过线性变换转换为一组不相关的变量,并且在变换的过程中变量的总方差是保持不变的,每个主成分都是由原有的P个变量线性组合得到的,在诸多主成分Z中,Z1在总方差中占的比重最大,说明它综合原有变量的能力最强,其余的主成分在总方差中占的比重会依次递减,说明越往后的主成分综合原信息的能力越弱。在之后的分析中我们使用前面几个方差最大的主成分来代替原有变量来进行,一般情况下要求前几个主成分所包含的信息不少于原始信息的85%,这样既减少了变量的数目,又能够用较少的主成分反映原有变量的绝大部分信息。.因子分析:通过因子分析得到的新变量是对每一个原始变量进行内部剖析。比如说,原始变量是成千上万的糕点,每一种糕点的原材料都有面粉、油、糖及相应的不同原料,这其中面粉、油、糖是所有糕点的共同材料,这就可以代表因子分析中的因子变量,当我们通过分析正确地选择了因子变量后,如果想要考虑成千上万糕点的物价变动,那么只需要重点考虑面粉、油、糖等公共因子的物价变动即可。因子分析得到的新变量不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子和特殊因子两个部分,因子分析的目的就是要利用少数几个公共因子去解释较多个观测变量中存在的复杂关系。.主成分分析和因子分析的不同:①主成分分析侧重于“变异量”,得到的主成分是原始变量的线性组合;因子分析更重视相关变量的“共变异量”,因子分析需要构造因子模型,原始变量是公共因子的线性组合,因子作为影响观测变量的潜在变量,目的是找出起作用的少数关键因子②因子分析的评价结果没有主成分分析准确,因子分析比主成分分析的计算工作量大③主成分分析中当给定唯一的数据矩阵后主成分一般是固定的,但是因子分析可以通过旋转得到不同的因子结果,这使得因子分析在解释方面更加有优势④由于特殊因子的存在所有因子分析得到的公共因子只能够解释部分变异,:主成分分析主要作为一种探索性的技术,也就是在进行多元数据分析之前,用主成分分析来分析数据可以对自己的数据有一个大致的了解,主要用于①了解数据;②在进行聚类分析之前利用主成分分析降维提升计算速度;③当变量数很多个案数不多时直接判别分析可能无法得到结果,这时候可以使用主成分分析来对变量进行简化;④利用主成分分析来判断多元变量直接是否存在共线性。而一般来说,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且可以借助旋转技术来帮助得到更好的解释。而如果想要把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析的话,则可以使用主成分分析。.主成分法:假设变量是各因子的线性组合,从原始变量的总体方差变异出发,尽量使原始变量的方差能够被公因子解释,并且各公因子对原始变量方差变异的解释比例依次减少。主轴因子法:不同于主成分法从原始变量的方差出发,而是从变量相关系数的矩阵出发,使原始变量的相关程度尽可能地被公因子解释。这种方法主要在于解释变量的相关性,确定内在结构,当研究的目的在于确定结构,而对变量方差的情况不太关心时,可以使用这种方法。极大似然法:要求公共因子和特殊因子都服从正态分布,在样本量较大时(1500以上)使用效果较好,此外,最大似然法能够输出载荷的显著性以及置信区间。.

《探索性因素分析》 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数15
  • 收藏数0 收藏
  • 顶次数0
  • 上传人相惜
  • 文件大小265 KB
  • 时间2020-10-18