下载此文档

成都中考A卷题圆试题.doc


文档分类:中学教育 | 页数:约38页 举报非法文档有奖
1/38
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/38 下载此文档
文档列表 文档介绍
成都中考A卷20题圆试题精选考试范围:圆综合;考试时间:100分钟;命题人:数学备课组学校:___________姓名:___________班级:___________考号:(共13小题),△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=BC.(1)求∠BAC的度数;(2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H;求证:四边形AFHG是正方形;(3)若BD=6,CD=4,,在锐角△ABC中,AC是最短边;以AC中点O为圆心,AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连接AE、AD、DC.(1)求证:D是的中点;(2)求证:∠DAO=∠B+∠BAD;(3)若,且AC=4,:如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)若⊙O的半径为5,AF=,求tan∠,如图,AB是⊙O的直径,C是⊙O上一点,连接AC,过点C作直线CD⊥AB于D(AD<DB),点E是DB上任意一点(点D、B除外),直线CE交⊙O于点F,连接AF与直线CD交于点G.(1)求证:AC2=AG•AF;(2)若点E是AD(点A除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,,AB是半圆O的直径,AB=、,连接BD交半圆于点C,,垂足为点E,,切点为P,与BN相交于点Q.(1)求证:△ABC∽△OFB;(2)当△ABD与△BFO的面枳相等时,求BQ的长;(3)求证:当D在AM上移动时(A点除外),,已知⊙O1与⊙O2都过点A,AO1是⊙O2的切线,⊙O1交O1O2于点B,连接AB并延长交⊙O2于点C,连接O2C.(1)求证:O2C⊥O1O2;(2)证明:AB•BC=2O2B•BO1;(3)如果AB•BC=12,O2C=4,,△ABC内接于⊙O,AB是⊙O的直径,PA是过A点的直线,∠PAC=∠B,(1)求证:PA是⊙O的切线;(2)如果弦CD交AB于E,CD的延长线交PA于F,AC=8,CE:ED=6:5,AE:EB=2:3,求AB的长和∠,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=,求cos∠,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=,求⊙,圆O是△ABC的外接圆,∠BAC与∠ABC的平分线相交于点I,延长AI交圆O于点D,连接BD、DC.(1)求证:BD=DC=DI;(2)若圆O的半径为10cm,∠BAC=120°,求△,等腰直角三角形ABC的腰长是2,∠ABC=,M是BC上一动点(不运动至B、C两点),过点M引半圆为O的切线,切点是P,过点A作AB的垂线AN,交切线MP于点N,AC与ON、MN分别交于点E、F.(1)证明:△MON是直角三角形;(2)当BM=时,求的值(结果不取近似值);(3)当BM=时(图2),判断△AEO与△CMF是否相似?如果相似,请证明;如果不相似,,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果BE=10,sinA=,求⊙,AB是⊙O的直径,BC是⊙O的弦,⊙O的割线PDE垂直AB于点F,交BC于点G,连接PC,∠BAC=∠BCP,求解下列问题:(1)求证:CP是⊙O的切线.(2)当∠ABC=30°,BG=,CG=时,求以PD、PE的长为两根的一元二次方程.(3)若(1)的条件不变,当点C在劣弧AD上运动时,应再具备什么条件可使结论BG2=BF•BO成立?试写出你的猜想,并说明理由. (共13小题),△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=BC.(1)求∠

成都中考A卷题圆试题 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数38
  • 收藏数0 收藏
  • 顶次数0
  • 上传人AIOPIO
  • 文件大小505 KB
  • 时间2020-10-20