硬膜板上催化作用下的自限性组装:
用在锂硫电池中的中尺度石墨烯纳米壳
汇报人:XXX
目录
Source of the article
Research background A
Li-S batteriy:
high theoretical energy density of 2600 Wh/kg;
S:
naturally abundant, economically effective, and environmentally friendly;
Graphene and other nanostructured carbon materials:
excellent conductivity, high specific surface area, accommodate large volume expansion;
Issues:
Li-S battery: poor cycling life and rate performance
S: large volumetric expansion,poor conductivity
Graphene: couldn’t integrate all the structural benefits.
The concept of HGNs might be a promising strategy, which yet calls for new synthetic methodology.
Research background B
研究背景:
中空纳米结构对提升电池性能有巨大优势, 但传统方法难以制作
研究目的:
提升锂硫电池容量;提高电池稳定性
解决方案:
中空石墨烯纳米球壳结构,嵌入硫合成复合材料,作为电池正极
Abstract
Hollow nanostructures:
表面积大;活性部位充分暴露;物质输运的动力学性能优良;表面通透性好
A mesoscale approach to fabricate graphene shells:
催化剂作用下,在原位形成的纳米颗粒上实现纳米石墨烯的自限性组装
Use:
石墨烯纳米球壳作为基体与S复合,用作锂硫电池正极材料
Properties:
初始放电容量:1520mAh/g()
,70%容量保持
1000次循环,%
Introduction
Hollow nanostructures的优势
Applications:
catalysis, adsorption, chemical sensors, drug/gene delivery, and energy storage/conversion systems
Hollow nanocrystals:
mesoscale hollow structure, nanoscale quantum effects, and atomic-scale periodic arrangement
Hollow graphene nanoshells(HGNs):
favourable electrical conductivity, good surface functionality, mechanical/chemical stability, and biocompatibility
Hollow nanostructures的合成困境
The template-free or self-templating bottom-up approaches:hardly extended to HGN synthesis;
A template-involving top-down strategy:no catalytic capability to regularly manage the arrangement of carbon atoms;
Thus, controllable synthesis of HGNs with an engineered hollow cavity, predetermined layer number, small size, and highly crystalline few-layer graphene shells is rarely achieved
Hollow nanostructures新的合成方案
A mesoscale cat
英文文献汇报 ppt课件 来自淘豆网m.daumloan.com转载请标明出处.