computational_geometry(方灿).ppt


文档分类:医学/心理学 | 页数:约83页 举报非法文档有奖
1/83
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/83
文档列表 文档介绍
Computational Geometry: Voronoi Diagram and Delaunay Triangulation
2011 by Fang, Can
1
Post Office: What is the area of service?
q
q : free point
e
e : Voronoi edge
v
v : Voronoi vertex
pi
pi : site points
Definition of Voronoi Diagram
Let P be a set of n distinct points (sites) in the plane.
The Voronoi diagram of P is the subdivision of the plane into n cells, one for each site.
A point q lies in the cell corresponding to a site pi  P iff Euclidean_Distance( q, pi ) < Euclidean_distance( q, pj ), for each pi  P, j  i.
Voronoi Diagram Example:1 site
Two sites form a perpendicular bisector
Voronoi Diagram is a line that extends infinitely in both directions, and the two half planes on either side.
Collinear sites form a series of parallel lines
Non-collinear sites form Voronoi half lines that meet at a vertex
A Voronoi vertex is the center of an empty circle touching 3 or more sites.
v
Half lines
A vertex has degree  3
Voronoi Cells and Segments
v
Voronoi Cells and Segments
v
Unbounded Cell
Bounded Cell
Segment
Existence of Bounded Cells
v
Which of the following is true for 2-D Voronoi diagrams?
Four or more non-collinear sites are…
sufficient to create a bounded cell
necessary to create a bounded cell
1 and 2
none of above

computational_geometry(方灿) 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数83
  • 收藏数0 收藏
  • 顶次数0
  • 上传人zhangbing32159
  • 文件大小0 KB
  • 时间2014-06-01