下载此文档

r语言-决策树算法.doc


文档分类:IT计算机 | 页数:约11页 举报非法文档有奖
1/11
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/11 下载此文档
文档列表 文档介绍
决策树算法
决策树定义
首先,我们来谈谈什么是决策树。我们还是以鸢尾花为例子来说明这个问题。
 
观察上图,我们判决鸢尾花的思考过程可以这么来描述:(图中绿色的分类),长度大于1cm的呢?我们通过宽度来判别,(图中红色的分类),其余的就是virginica(图中黑色的分类)
我们用图形来形象的展示我们的思考过程便得到了这么一棵决策树:
这种从数据产生决策树的机器学习技术叫做决策树学习, 通俗点说就是决策树,说白了,这是一种依托于分类、训练上的预测树,根据已知预测、归类未来。
前面我们介绍的k-近邻算法也可以完成很多分类任务,但是他的缺点就是含义不清,说不清数据的在逻辑,而决策树则很好地解决了这个问题,他十分好理解。从存储的角度来说,决策树解放了存储训练集的空间,毕竟与一棵树的存储空间相比,训练集的存储需求空间太大了。
决策树的构建
一、KD3的想法与实现
下面我们就要来解决一个很重要的问题:如何构造一棵决策树?这涉及十分有趣的细节。
先说说构造的基本步骤,一般来说,决策树的构造主要由两个阶段组成:第一阶段,生成树阶段。选取部分受训数据建立决策树,决策树是按广度优先建立直到每个叶节点包括相同的类标记为止。第二阶段,决策树修剪阶段。用剩余数据检验决策树,如果所建立的决策树不能正确回答所研究的问题,我们要对决策树进行修剪直到建立一棵正确的决策树。这样在决策树每个部节点处进行属性值的比较,在叶节点得到结论。从根节点到叶节点的一条路径就对应着一条规则,整棵决策树就对应着一组表达式规则。
问题:我们如何确定起决定作用的划分变量。
我还是用鸢尾花的例子来说这个问题思考的必要性。使用不同的思考方式,我们不难发现下面的决策树也是可以把鸢尾花分成3类的。
 
为了找到决定性特征,划分出最佳结果,我们必须认真评估每个特征。通常划分的办法为信息增益和基尼不纯指数,。
关于信息增益和熵的定义烦请参阅百度百科,这里不再赘述。
直接给出计算熵与信息增益的R代码:
1、 计算给定数据集的熵
calcent<-function(data){
nument<-length(data[,1])
key<-rep("a",nument)
for(i in 1:nument)
key[i]<-data[i,length(data)]
ent<-0
prob<-table(key)/nument
for(i in 1:length(prob))
ent=ent-prob[i]*log(prob[i],2)
return(ent)
}
 
 
 
我们这里把最后一列作为衡量熵的指标,例如数据集mudat(自己定义的)
> mudat
x y z
1 1 1 y
2 1 1 y
3 1 0 n
4 0 1 n
5 0 1 n
计算熵
> calcent(mudat)
1

熵越高,混合的数据也越多。得到熵之后,我们就可以按照获取最大信息增益的方法划分数据集
 
 
2、 按照给定特征划分数据集
为了简单起见,我们仅考虑标称数据(对于非标称数据,我们采用划分的办法把它们化成标称的即可)。
R代码:
split<-function(data,variable,value){
result<-()
for(i in 1:length(data[,1])){
if(data[i,variable]==value)
result<-rbind(result,data[i,-variable])
}
return(result)
}
 
 
这里要求输入的变量为:数据集,划分特征变量的序号,划分值。我们以前面定义的mudat为例,以“X”作为划分变量,划分得到的数据集为:
> split(mudat,1,1)
y z
1 1 y
2 1 y
3 0 n
> split(mudat,1,0)
y z
4 1 n
5 1 n
3、选择最佳划分(基于熵增益)
choose<-function(data){
numvariable<-length(data[1,])-1
baseent<-calcent(data)
bestinfogain<-0
bestvariable<-0
infogain<-0
featlist<-c()
uniquevals<-c()
for(i in1:numvariable){
featlist<-data[,i]
uniqueva

r语言-决策树算法 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数11
  • 收藏数0 收藏
  • 顶次数0
  • 上传人tswng35
  • 文件大小360 KB
  • 时间2020-12-07
最近更新