函数的单调性
A组
1.(2009年高考卷改编)下列函数f(x)中,满足“对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”的是________.
①f(x)= ②f(x)=(x-1)2 ③f(x)=ex ④f(x)=ln(x+1)
解析:∵对任意的x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2),∴f(x)在(0,+∞)上为减函数.答案:①
2.函数f(x)(x∈R)的图象如右图所示,则函数g(x)=f(logax)(0<a<1)的单调减区间是________.
解析:∵0<a<1,y=logax为减函数,∴logax∈[0,]时,g(x)为减函数.
由0≤logax≤≤x≤:[,1](或(,1))
3.函数y=+ 的值域是________.
解析:令x=4+sin2α,α∈[0,],y=sinα+cosα=2sin(α+),∴1≤y≤2.
答案:[1,2]
4.已知函数f(x)=|ex+|(a∈R)在区间[0,1]上单调递增,则实数a的取值围__.
解析:当a<0,且ex+≥0时,只需满足e0+≥0即可,则-1≤a<0;当a=0时,f(x)=|ex|=ex符合题意;当a>0时,f(x)=ex+,则满足f′(x)=ex-≥0在x∈[0,1]上恒成立.只需满足a≤(e2x)min成立即可,故a≤1,综上-1≤a≤1.
答案:-1≤a≤1
5.(原创题)如果对于函数f(x)定义域任意的x,都有f(x)≥M(M为常数),称M为f(x)的下界,下界M中的最大值叫做f(x)的下确界,下列函数中,有下确界的所有函数是________.
①f(x)=sinx;②f(x)=lgx;③f(x)=ex;④f(x)=
解析:∵sinx≥-1,∴f(x)=sinx的下确界为-1,即f(x)=sinx是有下确界的函数;∵f(x)=lgx的值域为(-∞,+∞),∴f(x)=lgx没有下确界;∴f(x)=ex的值域为(0,+∞),∴f(x)=ex的下确界为0,即f(x)=ex是有下确界的函数;
∵f(x)=的下确界为-1.∴f(x)=是有下确界的函数.答案:①③④
6.已知函数f(x)=x2,g(x)=x-1.
(1)若存在x∈R使f(x)<b·g(x),数b的取值围;
(2)设F(x)=f(x)-mg(x)+1-m-m2,且|F(x)|在[0,1]上单调递增,数m的取值围.
解:(1)x∈R,f(x)<b·g(x)x∈R,x2-bx+b<0Δ=(-b)2-4b>0b<0或b>4.(2)F(x)=x2-mx+1-m2,Δ=m2-4(1-m2)=5m2-4,
①当Δ≤0即-≤m≤时,则必需
-≤m≤0.
②当Δ>0即m<-或m>时,设方程F(x)=0的根为x1,x2(x1<x2),若≥1,则x1≤0.
m≥2.
若≤0,则x2≤0,
-1≤m<-.综上所述:-1≤m≤0或m≥2.
B组
1.(2010年东营模拟)下列函数中,单调增区间是(-∞,0]的是________.
①y=- ②y=-(x-1) ③y=x2-2 ④y=-|x|
解析:由函数y=-|x|的图象可知其增区间为(-∞,0].答案:④
2.若函数f(x)=log2(x2-ax+3a
高考数学复习-函数地单调性 来自淘豆网m.daumloan.com转载请标明出处.