“抽屉原理”教学实录与思考
教学内容:人教版六年级下册“数学广角——抽屉原理”
教学思考:
有效的教学是从研究学生开始的。“解惑”需要先“知惑”,教学要从学生的视角望出去,瞄准学生的认知障碍,否则会造成“学生痒的地方没抓到,不痒的地方倒是抓到了,结果还是痒。” “抽屉原理”看似简单,但因为其实质是揭示了一种存在性,比较抽象,要让小学生建构起自己的实质性理解,还是很有挑战性的。首先,抽屉原理的精练表述,明显超出了一般人的抽象概括能力。对“总有一个抽屉里放入的物体数至少是多少” 这样的表述,学生不易理解,教学中学生也很难用“总有”、“至少”这样的语言来陈述。第二,抽屉原理研究的是物体数最多的一个抽屉里最少会有几个物体,只研究它存在这样一个现象,不需要指出具体是哪一个抽屉,也就是说,对“抽屉”是不加区分的。而小学生容易受到思维定式的影响,理解起来有难度。在枚举时会把(2、1、1),(1、1、2),(1、2、1)理解成三种不同的情况。第三,人教版教材在例2的编排中是运用有余数除法的形式表达出假设法的核心思路,即5÷2=2……1。但由于该除法算式的余数正好是1,很容易让学生将“某个抽屉至少有书的本数”是“商加1”错误地等同于“商加余数”。基于以上分析,教学时要注意分散难点,鼓励学生借助实物操作或画草图等直观的方式逐步理解。同时,在交流中引导学生对“枚举法”、“假设法”等方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题,发展学生的类推能力和概括能力。
教学目标:
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用抽屉原理解决简单的实际问题。
2、通过操作、说理等活动发展学生的类推能力和概括能力,形成比较抽象的数学思维。
3、通过介绍德国数学家狄利克雷及对“抽屉原理”的实际应用,感受数学的魅力。
教学重难点:
经历“抽屉原理”的探究过程,并对简单的问题加以“模型化”。
教学过程:
一、创设情境,揭示课题。
师:虽然我对大家的生日不是很清楚,但我肯定在咱们班的40位同学中,至少有4位同学是在同一个月份出生的。相信吗?要不我们就来调查一下?
(现场调查学生)
师:看,我说的对吧?当然,“至少有4位同学是在同一个月份出生的”这句话并没有规定必须是几月份,反正“总有一个月份至少有4位同学出生”,所以,这个数据不管是在哪个月份出现,都能证明老师的话是正确的。老师为什么能料事如神呢?到底有什么秘诀呢?学习完这节课以后大家就知道了。
(反思:课始的导入引出了话题,也引发了数学思考,使学生初步感知“抽屉原理”,初步渗透了“不管怎样”、“总有一个”等思想。将数学学习与现实生活紧密联系,激起了学生探究新知的欲望。)
二、探究原理。
1、出示:小明说“把4枝铅笔放进3个文具盒中。不管怎么放,总有一个文具盒里至少放进2枝铅笔”,他说得对吗?请说明理由。
师:“总有”是什么意思?
生:一定有
师:“至少”有2枝是什么意思?
生1:不少于两只,可能是2枝,也可能是多于2枝。
生2:就是不能少于2枝。
师:好的,看来大家已经理解题目的意思了。你可以亲自动手摆一摆学具来研究,也可以在纸上画一画图,看看有哪几种放法?
学生思考,摆放、画图。
全班交流:
生1:可以在第一
抽屉原理 来自淘豆网m.daumloan.com转载请标明出处.