Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#
费马点的两证明方法
费马点 的两证明方法
费马点,就是平面上到三角形三顶点距离之和最小的点。
当三角形有一个内角大于或等于一百二十度的时候,费马点就是这个内角的顶点;如果三个内角都在120度以内,那么,费马点就是使得费马点与三角形三顶点的连线两两夹角为120度的点。
1、费马点不在三角形外,这个就不用证了,很显然。但为了严谨,还是说一下
2、当有一个内角大于等于120度时候
对三角形内任一点P
延长BA至C'使得AC=AC',做∠C'AP'=∠CAP,并且使得AP'=AP, PC'=PC,(说了这么多,其实就是把三角形APC以A为中心做了个旋转)
则△APC≌△AP'C'
∵∠BAC≥120°
∴∠PAP'=180°-∠BAP-∠C'AP'=180°-∠BAP-∠CAP=180°-∠BAC≤60°
∴等腰三角形PAP'中,AP≥PP'
∴PA+PB+PC≥PP'+PB+PC'>BC'=AB+AC
所以A是费马点
3、当所有内角都小于120°时
做出△ABC内一点P,使得∠APC=∠BPC=∠CPA=120°,分别作PA,PB,PC的垂线,交于D,E,F三点,如图,再作任一异于P的点P',连结P'A,P'B,P'C,过P'作P'H垂直EF于H
易知∠D=∠E=∠F=60°,即△DEF为等边三角形,计边长为d,面积为S
则有2S=d(PA+PB+PC)
∵P'A≥P'H
所以2S△EP'F≤P'A*d
同理有
2S△DP'F≤P'B*d
2S△EP'D≤P'C*d
相加得2S≤d(P'A+P'B+P'C)
即PA+PB+PC≤P'A+P'B+P'C,当且仅当P,P'
费马点的两证明方法 来自淘豆网m.daumloan.com转载请标明出处.