空间几何体的内切球与外接球问题
空间几何体的内切球与外接球问题
1.[2016·全国卷Ⅱ] 体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )
A.12π C.8π D.4π
[解析]A 因为正方体的体积为8,所以正方体的体对角线长为2,所以正方体的外接球的半径为,所以球的表面积为4π·()2=12π.
2.[2016·全国卷Ⅲ] 在封闭的直三棱柱ABC A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )
A.4π B. C.6π D.
[解析]B 当球与三侧面相切时,设球的半径为r1,∵AB⊥BC,AB=6,BC=8,∴8-r1+6-r1=10,解得r1=2,不合题意;当球与直三棱柱的上、下底面相切时,设球的半径为r2,则2r2=3,即r2=.∴球的最大半径为,故V的最大值为π×=π.
3.[2016·郑州模拟] 在平行四边形ABCD中,
∠CBA=120°,AD=4,对角线BD=2,将其沿对角线BD折起,使平面ABD⊥平面BCD,若四面体ABCD的顶点在同一球面上,则该球的体积为________.
答案:π;解析:因为∠CBA=120°,所以∠DAB=60°,在三角形ABD中,由余弦定理得(2)2=42+AB2-2×4·AB·cos 60°,解得AB=2,所以AB⊥⊥平面BCD,即有AB⊥平面BCD,如图所示,可知A,B,C,D可看作一个长方体中的四个顶点,长方体的体对角线AC就是四面体ABCD外接球的直径,易知AC==2,
所以球的体积为π.
4.[2016·山西右玉一中模拟] 球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,△ABC是边长为2的正三角形,平面SAB⊥平面ABC,则棱锥SABC的体积的最大值为( )
A. B. C.2 D.4
选A;[解析] (1)由于平面SAB⊥平面ABC,所以点S在平面ABC上的射影H落在AB上,根据球的对称性可知,当S在“最高点”,即H为AB的中点时,SH最大,此时棱锥SABC的体积最大.
因为△ABC是边长为2的正三角形,所以球的半径r=OC=CH=××2=.
在Rt△SHO中,OH=OC=,
所以SH==1,
故所求体积的最大值为××22×1=.
5.[2016·赣州模拟] 如图73819所示,设A,B,C,D为球O上四点,AB,AC,AD两两垂直,且AB=AC=,若AD=R(R为球O的半径),则球O的表面积为( )
7.[2016·福建泉州质检] 已知A,B,C在球O的球面上,AB=1,BC=2,∠ABC=60°,且点O到平面ABC的距离为2,则球O的表面积为________.
答案:20π [解析] 在△ABC中用余弦定理求得AC=,据勾股定理得∠BAC为直角,故BC的中点O1即为△ABC所在小圆的圆心,则OO1⊥平面ABC,在直角三角形OO1B中可求得球的半径r=,则球O的表面积S=4πr2=20π.
8. [2016·河南中原名校一联] 如图K3816所示,ABCDA1B1C1D1是边长为1的正方体,SABCD是高为1的正四棱锥,若点S,A1,B1,C1,D1在同一个球面上,则该球的表面积为( )
图K3816
选D;[解析] 如图所示作辅助线,易知球心O在SG1上,设OG1=x,则OB1=SO=2-x,同时由正方体的性质知B1G1=,则在Rt△OB
1G1中,由勾股定理得OB=G1B+OG,即(2-x)2=x2+,解得x=,所以球的半径R=2-=,所以球的表面积S=4πR2=π.
9.[2013·课标全放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为( )
A. cm3 B. cm3
C. cm3 D. cm3
解析:设球半径为R,由题可知R,R-2,正方体棱长一半可构成直角三角形,即△OBA为直角三角形,如图.
BC=2,BA=4,OB=R-2,OA=R,
由R2=(R-2)2+42,得R=5,
所以球的体积为π×53=π(cm3),故选A项.
答案:A
10.已知正四棱锥的侧棱与底面的边长都为3,则这个四棱锥的外接球的表面积为( )
A.12π B.36π C.72π D.108π
选B;解析:
空间几何体的内切球与外接球问题 来自淘豆网m.daumloan.com转载请标明出处.