会计学
1
高中数学排列组合的应用1
一、掌握优先处理元素(位置)法
二、掌握捆绑法
三、掌握插空法
四、隔板法
五、分组分配问题:
1、是否均匀;
2、是否有组别。
学习目标:
第1页/共27页
复习引入:
1、什么叫做从n个不同元素中取出m个元素的一个排列?
从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.
从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数. 用符号 表示
2、什么叫做从n个不同元素中取出m个元素的排列数?
3、排列数的两个公式是什么?
(n,m∈N*,m≤n)
第2页/共27页
组合定义:一般地说,从 n 个不同元素中,任取 m (m≤n) 个元素并成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合。
组合数公式:
组合数的两个性质:(1)
(2)
第3页/共27页
(优限法)
,1,2,3,4,5可以组成多少个没有重复数字
五位奇数.
解:由于末位和首位有特殊要求,应该优先安
排,以免不合要求的元素占了这两个位置
先排末位共有___
然后排首位共有___
最后排其它位置共有___
由分步计数原理得
=288
位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法。
第4页/共27页
(2)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?
解:将问题分步
第一步:甲乙站两端有 种
第二步:其余5名同学全排列有 种
答:共有2400种不同的排列方法。
(1)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?
分析:可看作甲固定,其余全排列
例2:
第5页/共27页
(3)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?
解法一:(特殊位置法)
第一步:从其余5位同学中找2人站排头和排尾,有 种;
第二步:剩下的全排列,有 种;
答:共有2400种不同的排列方法。
第6页/共27页
解法二:(特殊元素法)
第一步:将甲乙安排在除排头和排尾的5个位置中的两个位置上,有 种;
第二步:其余同学全排列,有 种;
答:共有2400种不同的排列方法。
第7页/共27页
解法三:(排除法)
先全排列有 种,其中甲或乙站排头有 种,
甲或乙站排尾的有 种,甲乙分别站在排头和
排尾的有 种.
答:共有2400种不同的排列方法。
第8页/共27页
【总结归纳】
一般地,对于有限制条件的排列问题,有以下两种方法:
⑴直接计算法
排列的限制条件一般是:某些特殊位置和特殊元素. 解决的办法是“特事特办”,对于这些特殊位置和元素,实行优先考虑,即特殊元素预置法、特殊位置预置法.
⑵间接计算法
先抛开限制条件,计算出所有可能的排列数,再从中减去不合题意的排列数,特别要注意:不能遗漏,也不能重复. 即排除法.
搞清限制条件的真正含义,做针对性文章!
第9页/共27页
高中数学排列组合的应用1PPT学习教案 来自淘豆网m.daumloan.com转载请标明出处.