地学中的统计学使用方法心得.doc地学中的统计学使用方法心得
地学中的统计学使用方法心得
1 统计软件的选择
在进行统计分析时,作者常使用非专门的数理统计软件Excel进行统计分析。由于Excel提供的统计分析功能十分有限,很难满足实际需要。目前,国际上已开发出的专门用于统计分析的商业软件很多,比较著名有SPSS(Statistical Package for SocialSciences)、SAS(Statistical AnalysisSystem)、BMDP和STATISTICA等。其中,SPSS是专门为社会科学领域的研究者设计的(但是,此软件在自然科学领域也得到广泛应用);BMDP是专门为生物学和医学领域研究者编制的统计软件。目前,国际学术界有一条不成文的约定:凡是用SPSS和SAS软件进行统计分析所获得的结果,在国际学术交流中不必说明具体算法。由此可见,SPSS和SAS软件已被各领域研究者普遍认可。建议作者们在进行统计分析时尽量使用这2个专门的统计软件。
2 均值的计算
在处理实验数据或采样数据时,经常会遇到对相同采样或相同实验条件下同一随机变量的多个不同取值进行统计处理的问题。此时,多数作者会不假思索地直接给出算术平均值和标准差。显然,这种做法是不严谨的。在数理统计学中,作为描述随机变量总体大小特征的统计量有算术平均值、几何平均值和中位数等。何时用算术平均值?何时用几何平均值?以及何时用中位数?这不能由研究者根据主观意愿随意确定,而要根据随机变量的分布特征确定。反映随机变量总体大小特征的统计量是数学期望,而在随机变量的分布服从正态分布时,其总体的数学期望就是其算术平均值。此时,可用样本的算术平均值描述随机变量的大小特征。如果所研究的随机变量不服从正态分布,则算术平均值不能准确反映该变量的大小特征。在这种情况下,可通过假设检验来判断随机变量是否服从对数正态分布。如果服从对数正态分布,则可用几何平均值描述该随机变量总体的大小。此时,就可以计算变量的几何平均值。如果随机变量既不服从正态分布也不服从对数正态分布,则按现有的数理统计学知识,尚无合适的统计量描述该变量的大小特征。退而求其次,此时可用中位数来描述变量的大小特征。
3 相关分析中相关系数的选择
在相关分析中,作者们常犯的错误是简单地计算Pearson积矩相关系数,而且既不给出正态分布检验结果,也往往不明确指出所计算的相关系数就是Pearson积矩相关系数。常用的相关系数除有Pearson积矩相关系数外,还有Spearman秩相关系数和Kendall秩相关系数等。其中,Pearson积矩相关系数可用于描述2个随机变量的线性相关程度(相应的相关分析方法称为“参数相关分析”,该方法的检验功效高,检验结果明确);Spearman或Kendall秩相关系数用来判断两个随机变量在二维和多维空间中是否具有某种共变趋势,而不考虑其变化的幅度(相应的相关分析称为“非参数相关分析”,该方法的检验功效较参数方法稍差,检验结果也不如参数方法明确)。各种成熟的统计软件如SPSS、SAS等均提供了这些相关系数的计算模块。在相关分析中,计算各种相关系数是有前提的。对于二元相关分析,如果2个随机变量服从二元正态分布,或2个随机变量经数据变换后服从二元正态分布,则可以用Pearson积矩相关系数描述这
地学中的统计学使用方法心得 来自淘豆网m.daumloan.com转载请标明出处.