: .
初中代数综合测试
LT
11、已知是方程的两根,且,
则为( )
A.-5 C.-9
12、如图,等腰Rt△ABC(∠ACB=90º)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为,则与之间的函数关系的图象大致是( )
、
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
一、 填空题:本大题共18分.只要求填写最后结果.
13、据统计,,用科学计数法表示
为 元。(保留2个有效数字)
14、下列因式分解:①;②;③;④.其中正确的是_______.(只填序号)
15、分式方程有增根,则m= .
16、如图,直径为10的⊙A经过点C(0,5)和点O (0,0),B是y轴右侧⊙A优弧上点,则∠OBC 的余弦值为 。
17、已知关于的方程的解是正数,则的取值范围是 .
18、已知关于x的一元二次方程有实数根,则m的取值范围是 .
三、解答题:
19、(1)计算:.
(2)先化简再求值:
20、解不等式组,并把解集在数轴上表示出来.
21、如图,在 Rt△ABC中,∠ACB=90°,D是AB 边上的一点,以BD为直径的 ⊙0与边 AC 相切于点E,连结DE并延长,与BC的延长线交于点 F .
( 1 )求证: BD = BF ;
( 2 )若 BC = 12 , AD = 8 ,求 BF 的长.
22、(7分)
如图,一次函数y = kx+1与反比例函数y =的图象交于点P,点P在第一象限,
PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、D,
且S△PBD = 4S△DOC , AO =2.
(1)求反比例函数与一次函数的解析式;
O
A
C
D
x
y
P
B
(2)根据图象写出当x>0时,反比例函数的值小于一次函数的值的x的取值范围.
23. 如图,一巡逻艇航行至海面处时,得知其正北方向上处一渔船发生故障.已知港口处在处的北偏西方向上,距处20海里;处在
初中代数综合测试 来自淘豆网m.daumloan.com转载请标明出处.