人教版小学三年级数学第24讲-和倍应用题
D
公式”了。由题意知两辆车 2时共行 360千米,故1时共行 360÷2=180(千米),这就是两辆车的速度和。
解:乙车的速度为
(360÷2)÷(2+1)= 60(千米/时),
甲车的速度为
60×2=20(千米/时),或180-60=120(千米/时)。
答:甲车每时行120千米,乙车每时行60千米。
从上面两道例题看出,用“和倍公式”的关键是确定“1倍”数(即小数)是谁,“和”是谁。例1、例2的“1倍”数与“和”极为明显,其中例2中虽未直接给出“和”,但也很容易求出。下面我们讲几个“1倍”数不太明显的例子。
例3 甲队有45人,乙队有75人。甲队要调入乙队多少人,乙队人数才是甲队人数的3倍?
分析:容易求得“二数之和”为 45+75=120(人)。如果从“乙队人数才是甲队人数的3倍”推出“1倍”数(即小数)是“甲队人数”那就错了,从75不是45的3倍也知是错的。这个“1倍”数是谁?根据题意,应是调动后甲队的剩余人数。倍数关系也是调动后的人数关系,即“调入人后的乙队人数”是“调走人后甲队剩余的人数”的3倍。由此画出线段图如下:
从图中看出,把甲队中“?”人调入乙队后,(45+75)就是甲队剩下人数的 3+1=4(倍)。从而,甲队调走人后剩下的人数就是“1倍”数。由和倍公式可以求解。
解:甲队调动后剩下的人数为
(45+75)÷(3+1)= 30(人),故甲队调入乙队的人数为45-30=15(人)。
答:甲队要调15人到乙队。
例4 妹妹有书24本,哥哥有书53本。要使哥哥的书是妹妹的书的6倍,妹妹应给哥哥多少本书?
仿照例3的分析可得如下解法。
解:兄妹图书总数是妹妹给哥哥一些书后剩下图书的(6+1)倍,根据和倍公式,妹妹剩下
(53+24)÷(6+1)=11(本)。故妹妹给哥哥书24-11=13(本)。
答:妹妹给哥哥书13本。
例5 大白兔和小灰兔共采摘了蘑菇160个。后来大白兔把它的蘑菇给了其它白兔20个,而小灰兔自己又采了10个。这时,大白兔的蘑菇是小灰兔的5倍。问:原来大白兔和小灰兔各采了多少个蘑菇?
分析与解:这道题仍是和倍应用题,因为有“和”、有“倍数”。但这里的“和”不是 160,而是160-20+10=150,“1倍”数却是“小灰兔又自己采了10个后的蘑菇数”。线段图如下:
根据和倍公式,小灰兔现有蘑菇(即“1倍”数)
(160-20+10)÷
人教版小学三年级数学第24讲-和倍应用题 来自淘豆网m.daumloan.com转载请标明出处.