最终论文参考版(精品).docx双负媒质宽频电磁散射特性分析
摘要
近年来,双负媒质材料的研究成为研究合成材料的热点。鉴于其异于传统媒质的典 型特性,其应用十分广泛。在信息化的今天,快速计算双负媒质散射体的电磁散射特性, 对实现双负媒质的宽频带的电磁散射特性分析很有现实意义和价值。本文首先介绍双负媒 质的研究背景与意义。然后介绍PMCHWT方程推导过程和矩量法的基本理论,阐述渐近波 形估计技术的基本理论。最后从双负媒质的本构关系出发,应用电磁辐射理论,推导出双 负媒质的PMCHWT方程,从而解出单频率入射波下的电流和雷达散射截面。由于双负媒质 的阻抗元素是波数k的复杂函数,对阻抗元素进行直接求导、而高阶求导却无法实现,因 此利用组合以及复合函数的求导思想实现了阻抗元素高阶导数的求导,将渐近波形估计技 术应用于双负媒质的宽频电磁计算领域。计算实例结果表明,渐近波形估计技术不仅在感 兴趣的频段内能很好逼近矩量法逐点求解的结果,而且在计算效率上也大大提高。 关键词:双负媒质;雷达散射截面;渐近波形估计;Drude模型;PMCHWT方程。
ABSTRACT
In recent years, the research of double negative (DNG) meta-material becomes one of the hottest topics in composition materials. Based on its typical characteristics different from traditional materials, the application of DNG meta-material is very wide. Following the development of information techniques, rapid computing double negative medium scattering the electromagnetism scatter of body characteristic and the realization of double negative medium the electromagnetic scattering of broadband is very practical significance and value. This paper first introduces the research background and significance of double negative medium. Then introduce the process of PMCHWT equation derivation and to explain the basic theory of method of moments and asymptotic waveform evaluation technique. Finally, from the double negative media on the constitutive relation, apply electromagnetic radiation theory to deduce the PMCHWT equation of double negative medium, thus solve the current and the radar cross section under the single-frequency incident wave. Owing to the impedance element of double negative medium is the complex function of wave number k and the higher order derivative of impedance element can not achieve directly, using the ideology of combinational and composite functions to realize it, asymptotic waveform evaluation technique is applied to the broadband electromagnetic computing realm of double negative medium. The results of living examples of calculation show that not only asymptotic waveform evaluation
最终论文参考版(精品) 来自淘豆网m.daumloan.com转载请标明出处.