下载此文档

spss相关分析案例讲解.doc


文档分类:IT计算机 | 页数:约24页 举报非法文档有奖
1/24
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/24 下载此文档
文档列表 文档介绍
. -
- -可修编.
相关分析
一、两个变量的相关分析:Bivariate
1.相关系数的含义
相关分析是研究变量间密切程度的一种常用统计方法。相关系数是描述相关关系强弱程度和方向的统计量,通常用r表示。
①相关系数的取值范围在-1和+1之间,即:–1≤r≤ 1。
②计算结果,若r为正,则表明两变量为正相关;若r为负,则表明两变量为负相关。
③相关系数r的数值越接近于1(–1或+1),表示相关系数越强;越接近于0,表示相关系数越弱。如果r=1或–1,则表示两个现象完全直线性相关。如果=0,则表示两个现象完全不相关(不是直线相关)。
④,称为微弱相关、,称为低度相关、,称为显著(中度)相关、,称为高度相关
⑤r值很小,说明X与Y之间没有线性相关关系,但并不意味着X与Y之间没有其它关系,如很强的非线性关系。
⑥直线相关系数一般只适用与测定变量间的线性相关关系,若要衡量非线性相关时,一般应采用相关指数R。
2.常用的简单相关系数
(1)皮尔逊(Pearson)相关系数
皮尔逊相关系数亦称积矩相关系数,1890年由英国统计学家卡尔•皮尔逊提出。定距变量之间的相关关系测量常用Pearson系数法。计算公式如下:
. -
- -可修编.
(1)
(1)式是样本的相关系数。计算皮尔逊相关系数的数据要求:变量都是服从正态分布,相互独立的连续数据;两个变量在散点图上有线性相关趋势;样本容量。
(2)斯皮尔曼(Spearman)等级相关系数
Spearman相关系数又称秩相关系数,是用来测度两个定序数据之间的线性相关程度的指标。
当两组变量值以等级次序表示时,可以用斯皮尔曼等级相关系数反映变量间的关系密切程度。它是根据数据的秩而不是原始数据来计算相关系数的,其计算过程包括:对连续数据的排秩、对离散数据的排序,利用每对数据等级的差额及差额平方,通过公式计算得到相关系数。其计算公式为:
(2)
(2)式中,为等级相关系数;为每对数据等级之差;为样本容量。
斯皮尔曼等级相关对数据条件的要求没有积差相关系数严格,只要两个变量的观测值是成对的等级评定资料,或者是由连续变量观测资料转化得到的等级资料,不论两个变量的总体分布形态、样本容量的大小如何,都可以用斯皮尔曼等级相关来进行研究。
(3)肯德尔(Kendall)等级相关系数
肯德尔(Kendall)等级相关系数是在考虑了结点(秩次相同)的条件下,测度两组定序数据或等级数据线性相关程度的指标。它利用排序数据的秩,通过计算不一致数据对在总数据对中的比例,来反映变量间的线性关系的。其计算公式如下:
. -
- -可修编.
(3)
(3)式中,是肯德尔等级相关系数;是不一致数据对数;为样本容量。
计算肯德尔等级相关系数的数据要求与计算斯皮尔曼等级相关系数的数据要求相同。
3.相关系数的显著性检验
通常,我们用样本相关系数r作为总体相关系数ρ的估计值,而r仅说明样本数据的X与Y的相关程度。有时候,由于样本数据太少或其它偶然因素,使得样本相关系数r值很大,而总体的X与Y并不存在真正的线性关系。因而有必要通过样本资料来对X与Y之间是否存在真正的线性相关进行检验,即检验总体相关系数ρ是否为零(即原假设是:总体中两个变量间的相关系数为0)。SPSS的相关分析过程给出了该假设成立的概率(输出结果中的Sig.)。
样本简单相关系数的检验方法为:
当原假设:,时,检验统计量为:
(4)
当原假设:,时,检验统计量为:
(5)
式中,为简单相关系数;为观测值个数(或样本容量)。
4.背景材料
设有10个厂家,序号为1,2,…,10

spss相关分析案例讲解 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数24
  • 收藏数0 收藏
  • 顶次数0
  • 上传人1006108867
  • 文件大小492 KB
  • 时间2021-08-19
最近更新