基于加权兴趣度的协同过滤算法研究
摘 要
互联网的应用推广以及由此带来的便捷信息传递和信息服务,使电子商务在迅速发
展、状大的同时也产生了信息超载现象。用户面对大量的商品信息,想要方便、快捷地
找到自己感兴趣的商品成为了一个难题。为了解决这个困境,电子商务的推荐系统便应
运而生。电子商务个性化推荐系统的出现,为用户疏通了一个 Web 商品信息过载的难题,
因为推荐系统承担起了识别客户消费兴趣,模拟传统销售人员向客户提供有关商品信息
和建议的职责,为客户有效、方便地完成购买过程提供了实际、有效的帮助,从而使网
购客户感受个性化服务所带来的快捷、时尚与便利。
在众多的推荐技术中,协同过滤推荐技术是目前为止最为成功的个性化推荐技术。
但该算法面临的冷启动、稀疏性等技术性问题对协同过滤技术的实效应用产生了影响,
许多研究旨在攻克和解决这个问题。本文也对电子商务个性化推荐应用系统中的协同推
荐算法,和应用相关的数据挖掘等关键技术,进行了有益的探索性研究。引入了“加权
兴趣度”和“事物本体模型”来挖掘用户的兴趣度,提出了基于加权兴趣度的协同过滤
推荐算法,使商品推荐能够更加迎合用户的兴趣倾向,并满足用户对商品的个性化需求。
论文对所提出的算法进行了相关数据测试,经过实验验证,应用基于加权兴趣度的
协同过滤算法在推荐的完整性、精度等方面均优于传统算法,尤其是在项目冷启动、稀
疏用户的评价数据集方面表现出了较为良好的推荐性能。
关键词: 加权兴趣度,数据挖掘,关联规则,聚类分析,协同过滤
1
Study on Collaborative filtering Based on
Weighted interestingness
Abstract
With the application and promotion of network, which offers us convenient delivery
and service of the information. E-commerce developed and expanded quickly ,but it also
encountered the overloading information the customers confront a great
deal of information of commodities,it is too difficult to find their fancy goods order
to solve the problem, E-commerce recommendation was borned at the right
-commerce recommendation is the key to the lock,because it undertakes the task on
distinguishment of customer’s fancy and role of salesman who is responsible for introducing
the commodity and giving effctive and pratical help to the cumstomers.
Among the recommendation techniques, collaborative filtering is the most successive
one so it encounters the cold start and data sparse which Hinder the development of
the technique. Much efforts is aimed at conquering paper is also studied on the
improving of the recommendation a
基于加权兴趣度的协同过滤算法研究 来自淘豆网m.daumloan.com转载请标明出处.