page 1 of Frontmatter Abstract Algebra: The Basic Graduate Year Robert B. Ash PREFACE This is a text for the basic graduate sequence in abstract algebra, offered by most universities. We study fundamental algebraic structures, namely groups, rings, fields and modules, and maps between these structures. The techniques are used in many areas of mathematics, and there are applications to physics, engineering puter science as well. In addition, I have attempted municate the intrinsic beauty of the subject. Ideally, the reasoning underlying each step of a proof should pletely clear, but the overall argument should be as brief as possible, allowing a sharp overview of the result. These two requirements are in opposition, and it is my job as expositor to try to resolve the conflict. My primary goal is to help the reader learn the subject, and there are times when informal or intuitive reasoning leads to greater understanding than a formal proof. In the text, there are three types of informal arguments: 1. The concrete or numerical example with all features of the general case. Here, the example indicates how the proof should go, and the formalization amounts to substituting Greek letters for numbers. There is no essential loss of rigor in the informal version. 2. Brief informal surveys of large areas. There are two of these, p-adic numbers and group representatio
Abstract Algebra-The Basic Graduate Year (13) 来自淘豆网m.daumloan.com转载请标明出处.