1 / 10
1.在数列中,
(I)设,求数列的通项公式
(II)求数列的前项和
2.设是公差不为零的等差数列,为其前项和,满足。
(1)求数列的通项公式及前项和;
,,且对满足的正整数都有
(1)当时,求通项
(2)证明:对任意,存在与有关的常数,使得对于每个正整数,都有
3 / 10
(n为正整数)。
(Ⅰ)令,求证数列是等差数列,并求数列的通项公式;
(Ⅱ)令,试比较与的大小,并予以证明。
,对任意的正整数,都有成立,记。
(I)求数列与数列的通项公式;
(II)设数列的前项和为,是否存在正整数,使得成立?若存在,找出一个正整数;若不存在,请说明理由;
(III)记,设数列的前项和为,求证:对任意正整数都有;
6.(2009北京文)设数列的通项公式为. 数列定义如下:对于正整数
3 / 10
m,是使得不等式成立的所有n中的最小值.
(Ⅰ)若,求;
(Ⅱ)若,求数列的前2m项和公式;
(Ⅲ)是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由.
7.(2009山东卷文)等比数列{}的前n项和为, 已知对任意的 ,点,均在函数且均为常数)的图像上.
(1)求r的值;
(11)当b=2时,记 求数列的前项和
1、分析:(I)由已知有
4 / 10
利用累差迭加即可求出数列的通项公式: ()
(II)由(I)知,
=
而,又是一个典型的错位相减法模型,
易得 =
(2)试求所有的正整数,使得为数列中的项。
【解析】 本小题主要考查等差数列的通项、求和的有关知识,考查运算和求解的能力。满分14分。
2、(1)设公差为,则,由性质得,因为,所以,即,又由得,解得,,
(2) (方法一)=,设,
则=, 所以为8的约数
(方法二)因为为数列中的项,
故为整数,又由(1)知:为奇数,所以
经检验,符合题意的正整数只有。
3、解:(1)由得
5 / 10
将代入化简得
所以
故数列为等比数列,从而
即
可验证,满足题设条件.
(2) 由题设的值仅与有关,记为则
考察函数 ,则在定义域上有
故对, 恒成立.
又 ,
注意到,解上式得
6 / 10
取,即有 .
4、解(I)在中,令n=1,可得,即
当时,,
.
.
又数列是首项和公差均为1的等差数列.
高中数列大题 来自淘豆网m.daumloan.com转载请标明出处.