关于主成分分析
第一页,本课件共有32页
在实际问题研究中,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。
因此,人们会很自然地想到,能否在相关分析的基础上,用较少的新变量代替原来较多的旧变量,而且使这些较少的新变量尽可能多地保留原来变量所反映的信息?
问题的提出:
第二页,本课件共有32页
100个学生的数学、物理、化学、语文、历史、英语的成绩如下表(部分)。
第三页,本课件共有32页
从本例可能提出的问题
目前的问题是,能不能把这个数据的6个变量用一两个综合变量来表示呢?
这一两个综合变量包含有多少原来的信息呢?
能不能利用找到的综合变量来对学生排序呢?这一类数据所涉及的问题可以推广到对企业,对学校进行分析、排序、判别和分类等问题。
第四页,本课件共有32页
事实上,这种想法是可以实现的,主成分分析方法就是综合处理这种问题的一种强有力的工具。
主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。
从数学角度来看,这是一种降维处理技术。 很显然,识辨系统在一个低维空间要比在一个高维空间容易得多。
第五页,本课件共有32页
在力求数据信息丢失最少的原则下,研究指标体系的少数几个线性组合,并且这几个线性组合所构成的综合指标将尽可能多地保留原来指标变异方面的信息,这种分析叫主成分分析,这些综合指标就称为主成分,主成分相互独立。
第六页,本课件共有32页
一、主成分分析的基本原理
假定有n个样本,每个样本共有p个变量,构成一个n×p阶的数据矩阵
()
第七页,本课件共有32页
当p较大时,在p维空间中考察问题比较麻烦。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多变量指标所反映的信息,同时它们之间又是彼此独立的。
第八页,本课件共有32页
定义:记x1,x2,…,xP为原变量指标,z1,z2,…,zm(m≤p)为新变量指标
()
系数lij的确定原则:
① zi与zj(i≠j;i,j=1,2,…,m)相互无关;
第九页,本课件共有32页
② z1是x1,x2,…,xP的一切线性组合中方差最大者,z2是与z1不相关的x1,x2,…,xP的所有线性组合中方差最大者;…; zm是与z1,z2,……,zm-1都不相关的x1,x2,…xP, 的所有线性组合中方差最大者。
则新变量指标z1,z2,…,zm分别称为原变量指标x1,x2,…,xP的第1,第2,…,第m主成分。
第十页,本课件共有32页
主成分分析课件 来自淘豆网m.daumloan.com转载请标明出处.