对数公式及对数函数地总结材料34043word
word
文案大全
word
对数运算和对数函数
对数的定义
①假如,如此叫做以为底的对数,记作,其中叫做底数,叫做真数.
②负数和零没有对数。③对数式与指数式的互化:。
常用对数与自然对数
常用对数:,(1);(2);(3);(4);(5);〔6〕
2化简如下各式:
(1);(2);(3);(4)
(5) (6)(7) (8)
(9); (10) 〔11〕
word
word
文案大全
word
3设,且,如此
4计算 的值 2.
5计算:的值
6计算:的值 102
7 计算:= -1
8计算:的值是(0 )
9计算:的值是( 2 )
10为正数,且,求使的值。1
11,是方程的两个根,如此的值是〔 2 〕
12,,且,如此与的大小关系_______
13设方程的两个根分别为,求的值
14,求的值。4
15实数,且,,求的值。1,5,9
16为正整数,且,且,
求的值。
类型二、对数函数的应用
1函数的定义域是____.2函数的定义域为.
3函数的定义域是( ) 4函数的定义域__。
word
word
文案大全
word
5假如,如此的定义域为〔 〕
6函数的定义域是()7求函数的定义域. 8函数的定义域为( )
9函数的定义域是〔〕10函数的定义域是〔〕 11函数的定义域是〔 〕 12函数的定义域是〔 〕
13函数的定义域是,如此函数的定义域是_______.
14 函数的定义域是〔 〕
15函数的定义域是〔 〕 16函数的定义域是〔 〕 17函数的定义域是〔 〕
18函数的值域为,如此函数的定义域是( )
19函数的值域是〔 〕
20函数的值域是( )
21函数在上的值域是( )
22函数的值域是〔 〕
23函数的值域是( ).
24函数的值域是( ).
25函数的值域是( ).
26函数的单调减区间是〔 〕
27假如函数在区间内单调递增,如此的取值X围是
28函数,使是单调增函数的值的区间是( )
word
word
文案大全
word
29如果函数与的增减性一样,如此的取值X围是________.
30函数的单调递减区间是________.
31函数是单调增函数的区间是( )
32函数在定义域上( A )A.是增函数 B.是减函数C.先增后减 D.先减后增
33,如果,如此的取值X围是________.
34设偶函数在上单调递减,如此与的大小关系是〔 A 〕
A. B. C. D. 不能确定
35函数〔 B 〕
A. 是偶函数,在区间上单调递增 B. 是偶函数,在区间上单调递减
C. 是奇函数,在区间上单调递增 D. 是奇函数,在区间上单调递减
36函数,假如,求的取值X围;
37设是奇函数,如此使的的取值X围是〔 〕
38假如,那么满足的关系〔 〕
39三个数的大小关系是〔 〕
40如果,那么下面不等关系式中正确的答案是( )
41设,如此的大小关系( )
42假如,且,如此如下不等式成立的是C
〔A〕〔B〕
〔C〕〔D〕
43假如,如此的大小关系〔<< 〕
44假如,,,如此的大小关系〔 〕
45设如此的大小关系
46设均为正数,且,,.如此的大小关系〔 〕
word
word
文案大全
word
47如此的大小关系
48假如,如此的大小关系
49,比拟的大小关系
50假如,令,如此的大小关系( )
51如此________.
52函数,假如,如此实数的取值X围是〔 〕
53函数,假如,如此〔 〕
54函数,假如,如此的值是〔 2〕
55函数=如此=________.
56,那么.
57设函数,( 9 )
58函数,且,如此=-
59函数,如此满足不等式的实数的取值X围为.
60函数,假如,求的值.
61函数的最大值是_5_____.
62假如,如此_____________.
63假如,使,那么______10_______.
word
word
文案大全
word
64假如,使,那么____2_________.
65函数,求的值.
66函数,假如如此= 1
67对数函数的图象过点(8,3),如此此函数的解析式为________.
68设且,函数和的图
对数公式及对数函数地总结材料 来自淘豆网m.daumloan.com转载请标明出处.