下载此文档

三角形辅助线总结及口诀要点.doc


文档分类:中学教育 | 页数:约21页 举报非法文档有奖
1/21
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/21 下载此文档
文档列表 文档介绍
-
. z.
三角形作辅助性方法大全
口诀:
总则:{3}标注等线和等角,对顶角不要忘,相等边角要避开。
{3}1、等腰三线合;过腰上一点做另腰平行或底平行线。
等腰
∴∠BAP =∠BPA
∵∠ABP =∠ABC-∠PBC = 50o-10o = 40o
∴∠PAB = (180o-∠ABP)= 70o
解法二:以AC为一边作等边三角形,证法同一。
解法三:以BC为一边作等边三角形△BCE,连结AE,则
EB = EC = BC,∠BEC =∠EBC = 60o
∵EB = EC
-
. z.
∴E在BC的中垂线上
同理A在BC的中垂线上
∴EA所在的直线是BC的中垂线
∴EA⊥BC
∠AEB = ∠BEC = 30o =∠PCB
由解法一知:∠ABC = 50o
∴∠ABE = ∠EBC-∠ABC = 10o =∠PBC
∵∠ABE =∠PBC,BE = BC,∠AEB =∠PCB
∴△ABE≌△PBC
∴AB = BP
∴∠BAP =∠BPA
∵∠ABP =∠ABC-∠PBC = 50o-10o = 40o
∴∠PAB = (180o-∠ABP) = (180o-40o)= 70o
二、角比拟
1、在利用三角形的外角大于任何和它不相邻的角证明角的不等关系时,如果直接证不出来,可连结两点或延长*边,构造三角形,使求证的大角在*个三角形外角的位置上,小角处在角的位置上,再利用外角定理证题.
例:D为△ABC任一点,求证:∠BDC>∠BAC
证法〔一〕:延长BD交AC于E,
∵∠BDC是△EDC 的外角,
∴∠BDC>∠DEC
同理:∠DEC>∠BAC
-
. z.
∴∠BDC>∠BAC
证法〔二〕:连结AD,并延长交BC于F
∵∠BDF是△ABD的外角,
∴∠BDF>∠BAD
同理∠CDF>∠CAD
∴∠BDF+∠CDF>∠BAD+∠CAD
即:∠BDC>∠BAC

⑴构造等腰三角形使二倍角是等腰三角形的顶角的外角
例:,如图,在△ABC中,∠1 = ∠2,∠ABC = 2∠C,
求证:AB+BD = AC
证明:延长AB到E,使BE = BD,连结DE
则∠BED = ∠BDE
∵∠ABD =∠E+∠BDE
∴∠ABC =2∠E
∵∠ABC = 2∠C
∴∠E = ∠C
在△AED和△ACD中
∠E = ∠C
∠1 = ∠2
AD = AD
∴△AED≌△ACD
-
. z.
∴AC = AE
∵AE = AB+BE
∴AC = AB+BE
即AB+BD = AC
⑵平分二倍角
例:,如图,在△ABC中,BD⊥AC于D,∠BAC = 2∠DBC
求证:∠ABC = ∠ACB
证明:作∠BAC的平分线AE交BC于E,则∠BAE = ∠CAE = ∠DBC
∵BD⊥AC
∴∠CBD +∠C = 90o
∴∠CAE+∠C= 90o
∵∠AEC= 180o-∠CAE-∠C= 90o
∴AE⊥BC
∴∠ABC+∠BAE = 90o
∵∠CAE+∠C= 90o
∠BAE = ∠CAE
∴∠ABC = ∠ACB
例:,如图,AB = AC,BD⊥AC于D,
求证:∠BAC = 2∠DBC
证明:〔方法一〕作∠BAC的平分线AE,交BC于E,则∠1 = ∠2 = ∠BAC
又∵AB = AC
∴AE⊥BC
-
. z.
∴∠2+∠ACB = 90o
∵BD⊥AC
∴∠DBC+∠ACB = 90o
∴∠2 = ∠DBC
∴∠BAC = 2∠DBC
〔方法二〕过A作AE⊥BC于E〔过程略〕
〔方法三〕取BC中点E,连结AE〔过程略〕
⑶加倍小角
例:,如图,在△ABC中,BD⊥AC于D,∠BAC = 2∠DBC
求证:∠ABC = ∠ACB
证明:作∠FBD =∠DBC,BF交AC于F〔过程略〕
三、两线做比拟
1、截长补短作辅助线的方法
截长法:在较长的线段上截取一条线段等于较短线段;
补短法:延长较短线段和较长线段相等.
这两种方法统称截长补短法.
当或求证中涉及到线段a、b、c、d有以下情况之一时用此种方法:
①a>b
②a±b = c
③a±b = c±d
例:,如图,在△A

三角形辅助线总结及口诀要点 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数21
  • 收藏数0 收藏
  • 顶次数0
  • 上传人xnzct26
  • 文件大小349 KB
  • 时间2022-02-17