消元法实验报告p.docx西京学院数学软件实验任务书
课程名称
数学软件实验
班级
***
学号
***
姓名
***
线性方程组直接三角分解法( Doolittle 分解, Grout
实验课题
angle
fun cti on
N=size(A);
n=N(1);
for i=n:-1:1
if (1<n)
x=SolveUpTria ngle(A,b)
s=A(i,(i+1): n)*x((i+1): n,1);
eals
s=0;
end
x(i,1)=(b(i)-s)/A(i,i);
end
程序二:
%SolveDow nTria ngle
fun cti on x=SloveDow nTria ng(A,b)
N=size(A);
n=N(1);
for i=1: n
if (i>1)
s=A(i,1:(i-1))*x(1:(i-1),1);
else
s=0;
end
x(i,1)=(b(i)-s)/A(i,i);
end
程序三 :
% Grout 分解
fun ction [x 丄 ,U]=Crout(A,b)
N=size(A);
n=N(1);
L=zeros (n,n);
U=eye (n,n);
L(1: n,1)=A(1: n,1)
U(1,1: n) =A(1,1: n)/L(1,1);
for k=2: n
L(i,k)=A(i,k)-L(i,1:(k-1))*U(1:(k-1),k);
end
for j=(k+1):n
U(k,j)=(A(k,j) 丄(k,1:(k-1))*U(1:(k-1),j))/L(k,k);
end
end
y=SolveDow nTria ngle(L,b); x=SolveUpTria ngle(U,y);
程序四:
% Doolittle 分解
fun ction [x 丄 ,U]=Doolittle(A,b)
N=size(A);
n=size(A);
L=eye( n,n);
U=zeros( n,n);
U(1,1: n) =A(1,1: n);
L(1: n,1)=A(1: n,1)/U(1,1);
for k=2: n
for i=k: n
U(k,i)=A(k,i)-L(k,1:(k-1))*U(1:(k-1),i);
end
for j=(k+1):n
L(j,k)=(A(j,k)-L(j,1:(k-1))*U(1:(k-1),k))/U(k,k); end
end
y=SolveDow nTria ngle(L,b);
x=SolveUpTria ngle(U,y);
程序五:
% Cholesky
消元法实验报告p 来自淘豆网m.daumloan.com转载请标明出处.