§1。 余弦定理
学习目标
1. 掌握余弦定理的两种表示形式;
2。 证明余弦定理的向量方法;
学习重点:余弦定理的探索。
学习难点:余弦定理的推导过程。
学习方法:自主、探究
知识链接:
1、已知,则 §1。 余弦定理
学习目标
1. 掌握余弦定理的两种表示形式;
2。 证明余弦定理的向量方法;
学习重点:余弦定理的探索。
学习难点:余弦定理的推导过程。
学习方法:自主、探究
知识链接:
1、已知,则 .
2、在三角形ABC中,用向量、表示向量。
自学
问题1:在中,、、的长分别为、、。
∵= ,
∴
同理可得: ,
.
2:余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的 的积的两倍.
3:这个式子中有几个量?
从余弦定理,又可得到以下推论:
, , ,
互学
一、已知两边及夹角解三角形
(1)△ABC中,,,,解三角形.
思学
1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;
2. 余弦定理的应用范围:
已知两边及它们的夹角,求第三边.
测学
已知a=,c=2,B=150°,解三角形.
课后反思:
余弦定理教学设计 来自淘豆网m.daumloan.com转载请标明出处.