下载此文档

正弦定理的教学设计说明.docx


文档分类:中学教育 | 页数:约11页 举报非法文档有奖
1/11
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/11 下载此文档
文档列表 文档介绍
.
2 / 11
一、教学内容分析
本节内容安排在《普通高中课程标准实验教科书·数学必修5》〔北师大版第二章,正弦定理第一课时,是在高一学生学习了三角等知识之后,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。
.
4 / 11
4.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
五、教学重点与难点
教学重点:正弦定理的发现与证明;正弦定理的简单应用。
教学难点:正弦定理的猜想提出过程。
六教学过程
设置情境
"工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?"
提出问题
仔细观察上面这个案例,我们发现利用以前曾经学过的有关三角形的知识已经无法解决。那我们该如何入手来帮工人师傅解决这个难题呢?
师:为了确定转运方案,请同学们设身处地地考虑一下有关的问题,将各自的问题经小组<前后4人为一小组>汇总整理后交给我。
待各小组将题纸交给老师后,老师筛选几张有代表性的题纸通过投影向全班展示,经大家归纳整理后得到如下的5个问题:
<l>
<2>
.
5 / 11
<3>
<4>
<5>
师:大家讨论一下,应该怎样解决上述问题?
大家经过讨论达成如下共识:要回答问题<l>,需要解决问题<2>,要解决问题<2>,需要先解决问题<3>和<4>,问题<3>用直角三角形知识可解,所以重点是解决问题<4>,问题<4>与问题<5>是两个相关问题,因此,解决上述问题的关键是解决问题<4>和<5>。
师:请同学们根据平行四边形法则,先在练习本上做出与问题对应的示意图,明确已知什么,要求什么,怎样求解。
生:
生:
师:请大家想一下,这两个问题的数学实质是什么?
部分学生:在三角形中,已知两边和其中一边的对角,求另一边的对角和第三边。
师:请大家讨论一下,如何解决这两个问题?
生:在已知条件下,若能知道三角形中两条边与其对角这4个元素之间的数量关系,则可以解决上述问题,求出另一边的对角。
生:如果另一边的对角已经求出,那么第三个角也能够求出。只要能知道三角形中两条边与其对角这4个元素的数量关系,则第三边也可求出。
生:在已知条件下,如果能知道三角形中三条边和一个角这4个元素之间的数量关系,也能求出第三边和另一边的对角。
.
6 / 11
师:同学们的设想很好,只要能知道三角形中两边与它们的对角间的数量关系,或者三条边与一个角间的数量关系,则两个问题都能够顺利解决。下面我们先来解答问题:三角形中,任意两边与其对角之间有怎样的数量关系?
3、解决问题
师:请同学们想一想,我们以前遇到这种一般问题时,是怎样处理的?
众学生:先从特殊事例入手,寻求答案或发现解法。直角三角形是三角形的特例,可以先在直角三角形中试探一下。
师:请各小组研究在Rt△ABC中,任意两边及其对角这4个元素间有什么关系?
多数小组很快得出结论:a/sinA = b/sinB = c/sinC。
师:a/sinA = b/sinB = c/sinC在非Rt△ABc中是否成立?
众学生:不一定,可以先用具体例子检验。若有一个不成立,则否定结论;若都成立,则说明这个结论很可能成立,再想办法进行严格的证明。
师:这是个好主意。请每个小组任意做出一个非Rt△ABC,用量角器和刻度尺量出各边的长和各角的大小,用计算器作为计算工具,具体检验一下,然后报告检验结果。
几分钟后,多数小组报告结论成立,只有一个小组因测量和计算误差,得出否定的结论。教师在引导学生找出失误的原因后指出:此关系式在任意△ABC中都能成立,请大家先考虑一下证明思路。
生:想法将问题转化成直角三角形中的问题进行解决。
生:因为要证明的是一个等式,所以应先找到一个可以作为证明基础的等量关系。
.
7 / 11
师:在三角形中有哪些可以作为证明基础的等量关系呢?
学生七嘴八舌地说出一些等量关系,经讨论后确定如下一些与直角三角形有关的等量关系可能有利用价值:1、三角形的面积不变;2、三角形同一边上的高不变;3、三角形外接圆直径不变。
师:同学们通过自己的努力,发现并证明了正弦定理。正弦定理揭示了三角形中任意两边与其对角的关系,请大家留意身边的事例,正弦定理能够解决哪些问题。
,解决例题
师生活动:
教师:引导学生运用已经发现的正弦定理解决本课开头给出的实际 问题,如何帮助工人

正弦定理的教学设计说明 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数11
  • 收藏数0 收藏
  • 顶次数0
  • 上传人nb6785
  • 文件大小21 KB
  • 时间2022-03-02
最近更新