房能源管理系统。站房能源管理系统结构如图2所示。
3能源管理系统设置方案
综合以上能源管理需求分析,结合实际情况与能耗特点,在站房内设置一套分层分布式能源管理系统,通过采集相关数据,对用能设备的历史数据进行挖掘分析,分析各控制系统之间的数据关联性,建立科学的多维度数据分析模型,找出具有节能潜力的方向,指导但不直接参与控制系统的控制逻辑,向各控制系统提出优化后的控制策略,适时适度调整用能设备的运行状态。3.1数据采集。能源管理系统采集的数据主要分为用能设备能耗数据及外界相关影响数据,如图3所示。3.1.1能耗数据采集。1)供水数据:站房一般采用分层分质分压供水模式。通过在设备区、公共区、宿舍区等不同区域进水管设置智能水表和水压检测设备,对不同区域不同时段的水压和耗水量进行统计。2)供暖数据:站房主要区域采用空调热风的方式进行采暖,通过在供暖管道设置智能仪表计量供暖流量。3)供电数据:采用放射式供电及树干式供电相结合的方式时,通过高低压开关柜内设置的智能仪表采集各类负荷的用电情况,同时在重要用电回路配电箱内单独增加智能仪表以供就地查看。3.1.2外界相关数据采集。1)环境数据:通过设置传感器,采集室外温度、湿度、风速、风向,室内温度、湿度、二氧化碳浓度等信息,作为能耗和环境关联性分析的依据。2)客流数据:通过数据接口与客服系统相连,采集进站客流、出站客流、发出客流、到站客流、行车信息等,分析滞留旅客量。3)反馈数据:在旅客公共区域设置舒适度意见反馈设备,候车室设置温度过热、热、舒适、冷、过冷5个体感选项,通过旅客的直接感官反馈站房实际环境状况,作为能源管理系统的辅助决策条件。3.2能耗分析。按照功能划分以及用能设备分布,站房可分为公共区、办公宿舍区、设备区、地下停车场等区域,各区域在不同时间段的能耗特点存在差异:公共区、办公宿舍区在春夏秋季耗水耗电,冬季耗水耗电耗暖,设备区全年耗电,地下停车场全年耗电。同时,影响用能设备能耗的外部因素有环境(季节、温度、湿度、二氧化碳、风速、风向等)、客流量(客流密度、客流分布)等,所以除了对能耗的结构性数据进行分析以外,还需要根据环境、客流量等对设备能耗进行关联性的分析。1)对用能设备(空调、照明、水泵、消防泵、电梯等)赋予多维度的属性。例如污水泵,同时赋予其排水设备、自控设备、间歇性负荷、站房公共设备等属性,以便统计与管理。2)统计分析站房各类用能设备的能耗状况,如图4所示。3)分析所有用能设备的能耗相关属性(环境等),列举影响设备能耗的所有相关性指标,给出能耗与相关性指标的关联曲线。例如对于智能照明系统,影响其运行状态的有时刻、照度、客流、车次等。4)建立历史数据库,对能耗数据进行同比、环比等指标分析。5)分析单一用能设备能耗及整体能耗的发展趋势,实现对比上年度同一日期能耗数据,对比上个月度同一日期能耗数据,对比前一天同一时刻能耗数据等功能,并对能耗发展趋势进行预测。如图5所示。6)分析各用能设备(空调、照明、电梯、水泵等)在所覆盖范围内的单位面积损耗、单位客流损耗。7)分析各用能设备(空调、照明、电梯、水泵等)年、月、日整体能耗曲线,并与相关外界环境数据变化曲线做比较,如图6所示。3.3成本分析。对于运营单位而言,进行能源管理的直接目的是分析运营成本并尽可能节省运营成本。站房用能设备的消耗成本分为2方面:设备能耗成本和设备折旧成本。设备能耗成本:能源管理系统将用能设备的能耗量折算为运营成本,并可进行分区域、分类统计。设备折旧成本:能源管理系统对用能设备进行全寿命周期管理,按一定的折旧系数计算并纳入运营成本。3.4数据报表。按照运营单位需求,能源管理系统可提供用能设备耗能的分区、分类、分时报表和曲线,并能以多种格式输出打印。根据需要,计算单位面积能耗、单位客流量能耗、历史平均能耗等,同时以报表形式输出。3.5异常能耗报警。根据用能设备历史耗能状态,能源管理系统可自行学习判断设备目前能耗是否属于正常范围,如果发生异常变动或超出设定阈值,可通过人工智能算法给出报警提示。例如,当监测到候车区盥洗室用水量突然增加,能源管理系统后台可给出报警提示信号,然后辅助判断可能有水阀损坏或水龙头漏关现象,通知工作人员及时进行排查处理,避免不必要的资源浪费和运营成本增加。3.6系统主机与后台。能源管理系统主机设置于站房消防控制室,系统主机由双电源切换装置供电,保障了其运行的可靠性。能源管理系统后台软件可采用图形化、表格化等多种人机显示界面形式,以大屏显示
能源管理系统在高铁站房的运用 来自淘豆网m.daumloan.com转载请标明出处.