卡口与大数据融合应用新看点
卡口与大数据融合应用新看点
[摘要] 随着各地智能交通信息系统工程的持续建设和投入,交通设施设备大量增加,尤其是卡口系统的数量快速增长,这导致卡口系统产生的过车数据迅速膨胀。
随着各地智能交通
卡口与大数据融合应用新看点
卡口与大数据融合应用新看点
[摘要] 随着各地智能交通信息系统工程的持续建设和投入,交通设施设备大量增加,尤其是卡口系统的数量快速增长,这导致卡口系统产生的过车数据迅速膨胀。
随着各地智能交通信息系统工程的持续建设和投入,交通设施设备大量增加,尤其是卡口系统的数量快速增长,这导致卡口系统产生的过车数据迅速膨胀。由于缺乏适当的手段去利用这些海量数据,导致了“重建设、轻应用”的现象。本文作者结合实际工作经验,提出了若干基于卡口系统的应用,有助于丰富卡口系统的应用形式。
文/吴明远
卡口背后的大数据
虽然卡口系统包含很多复杂技术,例如图像识别,但卡口系统最终生成的过车信息却异常简单,无外乎车牌号、车型、颜色、行驶速度、过车时间、卡口编号、车道编号等。正是这些简单信息汇聚起来,形成了数量庞大的过车记录,最终产生了若干基于卡口系统的应用。
假设每个卡口每小时平均过车3000辆,每天以10小时计(夜晚过车量很小),则每个卡口一天的过车数据有3万条。当前一线城市的卡口数量约在500个左右,以此计算,每天的过车记录将高达1500万条,一年下来就超过了50亿条记录。
稽查防控
作为卡口系统最为直接的应用,稽查防控应用最为广泛,例如针对逾期未年检车辆进行整治。用户指定需要布控的车牌号,卡口系统会实时扫描从所有卡口通过的车辆信息,一旦发现布控的车辆,会及时通过多种方式,在多种终端上进行报警,以便相关人员进行拦截。
车辆通过每一个卡口时,卡口系统会记录通过时间和车牌号,由此可以计算出车辆在相邻卡口间的通行时间,这就是旅行时间计算。
有了相邻卡口间的旅行时间,结合GIS,自动测算出相邻卡口间的道路长度,就可以计算出车辆在相邻卡口间的平均行驶速度,这就是区间测速。
由于电子狗的大量使用,不少驾驶员在通过卡口时,会主动降低速度,一旦离开卡口覆盖范围,又会迅速提高速度,超速行驶,传统的单点测速无法发现这种超速行为。利用区间测速,就可以有效解决该问题,此时只需在封闭道路的两端安装卡口,即可发现超速行为。利用该方式,可有效减少卡口建设数量,节省建设资金;同时解决了单点测速的弊端,可有效减少因超速带来的交通事故,强化路网通行规范,提高路网通行能力。
计算车辆旅行时间和区间行驶速度,在技术实现上,要求卡口系统针对每一条车辆通行记录,找出时间间隔最近的相同号牌的上一条通行记录,以此完成计算。如果碰巧找出的上一条通行记录所对应的卡口,与当前记录对应的卡口相距甚远,车辆完全不可能在这个时间间隔内穿越这两个卡口,这就意味着发现了车辆套牌行为。套牌行为的危险性毋庸赘述,一旦发现套牌行为,卡口系统可通过多种方式通知相关人员进行拦截。
交通流量分析
传统上,分析交通流量时,多使用来自地磁、微波等检测源的数据,但这些检测源都有一个共同点,那就是无法检测车牌号。这就限制了传统流量分析的应用场景,仅能对单一路段/路口进行分析,无法形成全局的流量
卡口与大数据融合应用新看点 来自淘豆网m.daumloan.com转载请标明出处.