新版人教版九年级数学全册知识点
第二十一章 一元二次方程
一元二次方程
在一个等式中,只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。
一元二次方程有四个特点:(1)只含有一个未知数圆形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转动的角称为旋转角。
(图形的旋转
本节我们重点了解旋转、平移性质,除外还有一个重点是点的对称变换。
二、知识要点
1、旋转:将一个图形绕着某点O转动一个角度的变换叫做旋转。其中,O叫做旋转中心,转动的角度叫做旋转角。
2、旋转性质
① 旋转后的图形与原图形全等
② 对应线段与O形成的角叫做旋转角
③ 各旋转角都相等
3、平移:将一个图形沿着某条直线方向平移一定的距离的变换叫做平移。其中,该直线的方向叫做平移方向,该距离叫做平移距离。
4、平移性质
① 平移后的图形与原图形全等
② 两个图形的对应边连线的线段平行相等(等于平行距离)
③ 各组对应线段平行且相等
5、中心对称与中心对称图形
① 中心对称:若一个图形绕着某个点O旋转180°,能够与另一个图形完全重合,则这两个图形关于这个点对称或中心对称。其中,点O叫做对称中心、两个图形的对应点叫做关于中心的对称点。
② 中心对称图形:若一个图形绕着某个点O旋转180°,能够与原来的图形完全重合,则这个图形叫做中心对称图形。其中,这个点叫做该图形的对称中心。
6、轴对称与轴对称图形
(1)、轴对称:若两个图形沿着某条轴对折,能够完全重合,则这两个图形关于这条轴对称或它们成轴对称。其中,这条轴叫做对称轴。
注:轴对称的性质:① 两个图形全等;② 对应点连线被对称轴垂直平分
(2)轴对称图形:若一个图形沿着某条轴对折,能够完全重合,则这个图形叫做轴对称图形。
7、点的对称变换
(1)、关于原点对称的点的特征
两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y)
(2)、关于x轴对称的点的特征
两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P'(x,-y)
(3)、关于y轴对称的点的特征
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P'(-x,y)
(4)、关于直线y=x对称
两个点关于直线y=x对称时,横坐标与纵坐标与之前对换,即:P(x,y)关于直线y=x的对称点为P'(y,x)
(5)、两个点关于直线y=-x对称时,横坐标与纵坐标与之前完全相反,即:P(x,y)关于直线y=x的对称点为P'(-y,-x)
注:y=x的直线是过一三象限的角平分线,y=-x的直线是过二四象限的角平分线。
第二十四章 圆
圆
定义:(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。
(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
圆心:(1)如定义(1)中,该定点为圆心
(2)如定义(2)中,绕的那一端的端点为圆心。
(3)圆任意两条对称轴的交点为圆心。
(4) 垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O表示
直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,=2r或r=二分之d。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈。
直径所对的圆周角是直角。90°的圆周角所对的弦是直径。
圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2,用字母S表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,
新版人教版九年级数学全册知识点 来自淘豆网m.daumloan.com转载请标明出处.