线是否在平面内
(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A、B、C三点不共线=有且只有一个平面α,
使A∈α、B∈α、C∈α。
公理2作用:确定一个平面的依据。
(3)公理3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P∈α∩β=α∩β=L,且P∈L
公理3作用:判定两个平面是否相交的依据
1空间的两条直线有如下三种关系:
共面直线
相交直线:同一平面内,有且只有一个公共点;
平行直线:同一平面内,没有公共点;
异面直线:不同在任何一个平面内,没有公共点。
2公理4:平行于同一条直线的两条直线相互平行。
符号表示为:设a、b、c是三条直线
a∥b
c∥b
强调:公理4实质上是说平行具有传递性,在平面、空间这特性质都适用。
公理4作用:推断空间两条直线平行的依据。
3等角定理:空间中假如两个角的两边分别对应平行,那么这两个角相等或互补
4留意点:
①a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;
②两条异面直线所成的角θ∈(0,);
③当两条异面直线所成的角是直角时,我们就说这两条异面直线相互垂直,记作a⊥b;
④两条直线相互垂直,有共面垂直与异面垂直两种情形;
⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
—、平面与平面之间的位置关系
1、直线与平面有三种位置关系:
(1)直线在平面内——有多数个公共点
(2)直线与平面相交——有且只有一个公共点
(3)直线在平面平行——没有公共点
指出:直线与平面相交或平行的状况统称为直线在平面外,可用aα来表示
aαa∩α=Aa∥α
、平面平行的判定及其性质
1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
符号表示:
aα
bβ=a∥α
a∥b
1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
符号表示:
aβ
bβ
a∩b=Pβ∥α
a∥α
b∥α
2、推断两平面平行的方法有三种:
(1)用定义;
(2)判定定理;
(3)垂直于同一条直线的两个平面平行。
—、平面与平面平行的性质
1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平
2022年高二数学必修一知识点总结 来自淘豆网m.daumloan.com转载请标明出处.